251 lines
7.5 KiB
Python
251 lines
7.5 KiB
Python
# -*- coding: utf-8 -*-
|
|
"""
|
|
Created on Thu Oct 6 19:17:27 2022
|
|
|
|
@author: anna
|
|
"""
|
|
|
|
|
|
import numpy as np
|
|
import matplotlib.pyplot as plt
|
|
import csv
|
|
from scipy.optimize import curve_fit
|
|
|
|
|
|
def read_csv(file_name):
|
|
with open(file_name) as file:
|
|
reader = list(csv.reader(file, delimiter=';',
|
|
quotechar=',', quoting=csv.QUOTE_MINIMAL))
|
|
return reader
|
|
|
|
|
|
def make_latex_table(data):
|
|
table = []
|
|
table.append("\\begin{table}".replace('//', '\\'))
|
|
table.append("\label{}".replace('/', '\\'))
|
|
table.append('\caption{}'.replace('/', '\\'))
|
|
leng = len(data[0])
|
|
stroka = 'c'.join(['|' for _ in range(leng+1)])
|
|
table.append('\\begin{tabular}{'.replace('//', '\\')+stroka+'}')
|
|
table.append('\hline')
|
|
for i in range(len(data)):
|
|
table.append(' & '.join(data[i]) + ' \\\\')
|
|
table.append('\hline')
|
|
table.append("\end{tabular}".replace('/', '\\'))
|
|
table.append("\end{table}".replace('/', '\\'))
|
|
return table
|
|
|
|
|
|
def make_point_grafic(x, y, xlabel, ylabel, caption, xerr, yerr,
|
|
subplot=None, color=None, center=None, s=15):
|
|
if not subplot:
|
|
subplot = plt
|
|
if type(yerr) == float or type(yerr) == int:
|
|
yerr = [yerr for _ in y]
|
|
if type(xerr) == float or type(xerr) == int:
|
|
xerr = [xerr for _ in x]
|
|
|
|
if xerr[1] != 0 or yerr[1] != 0:
|
|
subplot.errorbar(x, y, yerr=yerr, xerr=xerr, linewidth=4,
|
|
linestyle='', label=caption, color=color,
|
|
ecolor=color, elinewidth=1, capsize=3.4,
|
|
capthick=1.4)
|
|
else:
|
|
subplot.scatter(x, y, linewidth=0.005, label=caption,
|
|
color=color, edgecolor='black', s=s)
|
|
# ax = plt.subplots()
|
|
# ax.grid())
|
|
if not center:
|
|
plt.xlabel(xlabel)
|
|
plt.ylabel(ylabel)
|
|
else:
|
|
ax = plt.gca()
|
|
ax.spines['top'].set_visible(False)
|
|
ax.spines['right'].set_visible(False)
|
|
ax.spines['bottom'].set_position('zero')
|
|
ax.spines['left'].set_position('zero')
|
|
ax.set_xlabel(ylabel, labelpad=-180, fontsize=14) # +
|
|
ax.set_ylabel(xlabel, labelpad=-260, rotation=0, fontsize=14)
|
|
|
|
|
|
def make_line_grafic(xmin, xmax, xerr, yerr, xlabel, ylabel, k, b, caption,
|
|
subplot=None, color=None, linestyle='-'):
|
|
if not subplot:
|
|
subplot = plt
|
|
x = np.arange(xmin, xmax, (xmax-xmin)/10000)
|
|
subplot.plot(x, k*x+b, label=caption, color=color, linewidth=2.4,
|
|
linestyle=linestyle)
|
|
|
|
|
|
def make_graffic(x, y, xlabel, ylabel, caption_point, xerr, yerr, k=None,
|
|
b=None, filename=None, color=None, koef=[0.9, 1.1]):
|
|
if not color:
|
|
color = ['limegreen', 'indigo']
|
|
make_point_grafic(x, y, xlabel=xlabel,
|
|
ylabel=ylabel, caption=caption_point,
|
|
xerr=xerr, yerr=yerr, subplot=plt, color=color[0])
|
|
if k and b:
|
|
make_line_grafic(xmin=min(x)-1, xmax=max(x)+1, xerr=xerr, yerr=yerr,
|
|
xlabel='', ylabel='', k=k, b=b,
|
|
caption='Theoretical dependence', subplot=plt,
|
|
color='red')
|
|
if type(yerr) == float or type(yerr) == int:
|
|
yerr = [yerr for _ in y]
|
|
k, b, sigma = approx(x, y, b, yerr)
|
|
sigma[0] = abs(k*((sigma[0]/k)**2+(np.mean(yerr)/np.mean(y))**2 +
|
|
(np.mean(xerr)/np.mean(x))**2)**0.5)
|
|
if (b != 0):
|
|
sigma[1] = abs(b*((sigma[1]/b)**2+(np.mean(yerr)/np.mean(y))**2 +
|
|
(np.mean(xerr)/np.mean(x))**2)**0.5)
|
|
else:
|
|
sigma[1] = 0
|
|
|
|
make_line_grafic(xmin=min(x)*koef[0], xmax=max(x)*koef[1], xerr=xerr,
|
|
yerr=yerr, xlabel='', ylabel='', k=k, b=b, caption=None,
|
|
subplot=plt, color=color[1])
|
|
plt.legend()
|
|
return k, b, sigma
|
|
|
|
|
|
def approx(x, y, b, sigma_y, f=None):
|
|
if sigma_y[0] != 0:
|
|
sigma_y = [1/i**2 for i in sigma_y]
|
|
else:
|
|
sigma_y = np.array([1 for _ in y])
|
|
if f is None:
|
|
if b == 0:
|
|
def f(x, k):
|
|
return k*x
|
|
k, sigma = curve_fit(f, xdata=x, ydata=y, sigma=sigma_y)
|
|
sigma = np.sqrt(np.diag(sigma))
|
|
return k, b, [sigma, 0]
|
|
else:
|
|
def f(x, k, b):
|
|
return x*k + b
|
|
k, sigma = curve_fit(f, xdata=x, ydata=y, sigma=sigma_y)
|
|
sigma_b = np.sqrt(sigma[1][1])
|
|
b = k[1]
|
|
k = k[0]
|
|
sigma = np.sqrt(sigma[0][0])
|
|
|
|
return k, b, [sigma, sigma_b]
|
|
else:
|
|
k, sigma = curve_fit(f, xdata=x, ydata=y, sigma=sigma_y)
|
|
sigma = np.sqrt(np.diag(sigma))
|
|
b = k[1]
|
|
k = k[0]
|
|
return k, b, sigma
|
|
|
|
|
|
def find_delivation(data):
|
|
data = np.array(data).astype(np.float)
|
|
s = sum(data)/len(data)
|
|
su = 0
|
|
for i in data:
|
|
su += (i-s)**2
|
|
return (su/(len(data)-1))**0.5
|
|
|
|
|
|
def make_dic(filename):
|
|
data = np.array(read_csv(filename))
|
|
data = np.transpose(data)
|
|
dic = {}
|
|
for i in range(len(data)):
|
|
dic[data[i][0]] = np.array(data[i][1:]).astype(np.float)
|
|
data = dic
|
|
return data
|
|
|
|
|
|
def make_fun(A0, T):
|
|
def f(t, k, b):
|
|
return A0/(1+A0*b*t)-k*0*A0*t/T
|
|
return f
|
|
|
|
|
|
def make_fun_grafic(xmin, xmax, xerr, yerr, xlabel, ylabel, f, k, b, caption,
|
|
subplot=None, color=None):
|
|
if not subplot:
|
|
subplot = plt
|
|
x = np.arange(xmin, xmax, (xmax-xmin)/10000)
|
|
subplot.plot(x, f(x, k, b), label=caption, color=color)
|
|
|
|
|
|
def make_smth(r):
|
|
if (r == 0):
|
|
s = 'U(nu)_0.csv'
|
|
else:
|
|
s = 'U(nu)_R.csv'
|
|
nu = chr(957)
|
|
eps_u = 2.5/100
|
|
eps_nu = 0.1/100
|
|
data_0 = make_dic(s)
|
|
nu_m_0 = 0
|
|
U_m_0 = 0
|
|
j = 0
|
|
for i in range(len(data_0['U'])):
|
|
if (data_0['U'][i] >= U_m_0):
|
|
U_m_0 = data_0['U'][i]
|
|
nu_m_0 = data_0['nu'][i]
|
|
j = i
|
|
x = data_0['nu']/nu_m_0
|
|
y = data_0['U']/U_m_0
|
|
eps_nu_0 = abs(data_0['nu'][j-1]-data_0['nu'][j+1])/data_0['nu'][j]
|
|
xerr = eps_nu*2**0.5*x
|
|
yerr = eps_u*2**0.5*y
|
|
xlabel = nu + '/ '+nu+'$_m$'
|
|
ylabel = '$U/U_m$'
|
|
if r == 0:
|
|
caption = 'R = 0'
|
|
else:
|
|
caption = 'R = 100 Ом'
|
|
make_point_grafic(x, y, xlabel, ylabel, caption, xerr, yerr)
|
|
plt.grid(True)
|
|
cons = 0.727
|
|
j1 = len(x)
|
|
j2 = len(x)
|
|
for i in range(len(x)-1):
|
|
if y[i] >= cons and y[i+1] <= cons:
|
|
j2 = i
|
|
if y[i] <= cons and y[i+1] >= cons:
|
|
j1 = i
|
|
x1 = x[j1] + (cons - y[j1])*(x[j1+1]-x[j1])/(y[j1+1]-y[j1])
|
|
x2 = x[j2] + (cons - y[j2])*(x[j2+1]-x[j2])/(y[j2+1]-y[j2])
|
|
x = np.arange(min(x), max(x), step=0.001)
|
|
y_fit = [cons for _ in x]
|
|
plt.plot(x, y_fit)
|
|
Q = 1/abs(x2-x1)
|
|
err = Q*(eps_nu**2 +eps_nu_0**2+2*eps_u**2)**0.5
|
|
if r == 0: st = 'Q_0 = '
|
|
else: st = 'Q_R = '
|
|
print(st, Q, '+-', err)
|
|
|
|
|
|
def make_ust():
|
|
data = make_dic('ust_0.csv')
|
|
tet = -1/data['n'] * \
|
|
np.log((data['U_0']-data['U_k+n'])/(data['U_0']-data['U_k']))
|
|
Q = np.pi/tet
|
|
eps_u = 2.5/100
|
|
eps_Q = find_delivation(Q)/np.mean(Q)
|
|
sig = np.mean(Q)*(eps_u**2+eps_Q**2)**0.5
|
|
print('Q_0 = ', np.mean(Q),'+-', sig)
|
|
data = make_dic('ust_R.csv')
|
|
tet = -1/data['n'] * \
|
|
np.log((data['U_0']-data['U_k+n'])/(data['U_0']-data['U_k']))
|
|
Q = np.pi/tet
|
|
eps_Q = find_delivation(Q)/np.mean(Q)
|
|
sig = np.mean(Q)*(eps_u**2+eps_Q**2)**0.5
|
|
print('Q_R = ', np.mean(Q),'+-', sig)
|
|
|
|
|
|
def make_all():
|
|
plt.figure(dpi=500, figsize=(8, 5))
|
|
make_smth(0)
|
|
make_smth(1)
|
|
plt.legend()
|
|
plt.savefig('graf')
|
|
make_ust()
|
|
|
|
|
|
make_all()
|