Nazarchuk/3.2.5Вынужденные_колебания/laba.py
2022-10-14 20:55:52 +03:00

251 lines
7.5 KiB
Python

# -*- coding: utf-8 -*-
"""
Created on Thu Oct 6 19:17:27 2022
@author: anna
"""
import numpy as np
import matplotlib.pyplot as plt
import csv
from scipy.optimize import curve_fit
def read_csv(file_name):
with open(file_name) as file:
reader = list(csv.reader(file, delimiter=';',
quotechar=',', quoting=csv.QUOTE_MINIMAL))
return reader
def make_latex_table(data):
table = []
table.append("\\begin{table}".replace('//', '\\'))
table.append("\label{}".replace('/', '\\'))
table.append('\caption{}'.replace('/', '\\'))
leng = len(data[0])
stroka = 'c'.join(['|' for _ in range(leng+1)])
table.append('\\begin{tabular}{'.replace('//', '\\')+stroka+'}')
table.append('\hline')
for i in range(len(data)):
table.append(' & '.join(data[i]) + ' \\\\')
table.append('\hline')
table.append("\end{tabular}".replace('/', '\\'))
table.append("\end{table}".replace('/', '\\'))
return table
def make_point_grafic(x, y, xlabel, ylabel, caption, xerr, yerr,
subplot=None, color=None, center=None, s=15):
if not subplot:
subplot = plt
if type(yerr) == float or type(yerr) == int:
yerr = [yerr for _ in y]
if type(xerr) == float or type(xerr) == int:
xerr = [xerr for _ in x]
if xerr[1] != 0 or yerr[1] != 0:
subplot.errorbar(x, y, yerr=yerr, xerr=xerr, linewidth=4,
linestyle='', label=caption, color=color,
ecolor=color, elinewidth=1, capsize=3.4,
capthick=1.4)
else:
subplot.scatter(x, y, linewidth=0.005, label=caption,
color=color, edgecolor='black', s=s)
# ax = plt.subplots()
# ax.grid())
if not center:
plt.xlabel(xlabel)
plt.ylabel(ylabel)
else:
ax = plt.gca()
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
ax.spines['bottom'].set_position('zero')
ax.spines['left'].set_position('zero')
ax.set_xlabel(ylabel, labelpad=-180, fontsize=14) # +
ax.set_ylabel(xlabel, labelpad=-260, rotation=0, fontsize=14)
def make_line_grafic(xmin, xmax, xerr, yerr, xlabel, ylabel, k, b, caption,
subplot=None, color=None, linestyle='-'):
if not subplot:
subplot = plt
x = np.arange(xmin, xmax, (xmax-xmin)/10000)
subplot.plot(x, k*x+b, label=caption, color=color, linewidth=2.4,
linestyle=linestyle)
def make_graffic(x, y, xlabel, ylabel, caption_point, xerr, yerr, k=None,
b=None, filename=None, color=None, koef=[0.9, 1.1]):
if not color:
color = ['limegreen', 'indigo']
make_point_grafic(x, y, xlabel=xlabel,
ylabel=ylabel, caption=caption_point,
xerr=xerr, yerr=yerr, subplot=plt, color=color[0])
if k and b:
make_line_grafic(xmin=min(x)-1, xmax=max(x)+1, xerr=xerr, yerr=yerr,
xlabel='', ylabel='', k=k, b=b,
caption='Theoretical dependence', subplot=plt,
color='red')
if type(yerr) == float or type(yerr) == int:
yerr = [yerr for _ in y]
k, b, sigma = approx(x, y, b, yerr)
sigma[0] = abs(k*((sigma[0]/k)**2+(np.mean(yerr)/np.mean(y))**2 +
(np.mean(xerr)/np.mean(x))**2)**0.5)
if (b != 0):
sigma[1] = abs(b*((sigma[1]/b)**2+(np.mean(yerr)/np.mean(y))**2 +
(np.mean(xerr)/np.mean(x))**2)**0.5)
else:
sigma[1] = 0
make_line_grafic(xmin=min(x)*koef[0], xmax=max(x)*koef[1], xerr=xerr,
yerr=yerr, xlabel='', ylabel='', k=k, b=b, caption=None,
subplot=plt, color=color[1])
plt.legend()
return k, b, sigma
def approx(x, y, b, sigma_y, f=None):
if sigma_y[0] != 0:
sigma_y = [1/i**2 for i in sigma_y]
else:
sigma_y = np.array([1 for _ in y])
if f is None:
if b == 0:
def f(x, k):
return k*x
k, sigma = curve_fit(f, xdata=x, ydata=y, sigma=sigma_y)
sigma = np.sqrt(np.diag(sigma))
return k, b, [sigma, 0]
else:
def f(x, k, b):
return x*k + b
k, sigma = curve_fit(f, xdata=x, ydata=y, sigma=sigma_y)
sigma_b = np.sqrt(sigma[1][1])
b = k[1]
k = k[0]
sigma = np.sqrt(sigma[0][0])
return k, b, [sigma, sigma_b]
else:
k, sigma = curve_fit(f, xdata=x, ydata=y, sigma=sigma_y)
sigma = np.sqrt(np.diag(sigma))
b = k[1]
k = k[0]
return k, b, sigma
def find_delivation(data):
data = np.array(data).astype(np.float)
s = sum(data)/len(data)
su = 0
for i in data:
su += (i-s)**2
return (su/(len(data)-1))**0.5
def make_dic(filename):
data = np.array(read_csv(filename))
data = np.transpose(data)
dic = {}
for i in range(len(data)):
dic[data[i][0]] = np.array(data[i][1:]).astype(np.float)
data = dic
return data
def make_fun(A0, T):
def f(t, k, b):
return A0/(1+A0*b*t)-k*0*A0*t/T
return f
def make_fun_grafic(xmin, xmax, xerr, yerr, xlabel, ylabel, f, k, b, caption,
subplot=None, color=None):
if not subplot:
subplot = plt
x = np.arange(xmin, xmax, (xmax-xmin)/10000)
subplot.plot(x, f(x, k, b), label=caption, color=color)
def make_smth(r):
if (r == 0):
s = 'U(nu)_0.csv'
else:
s = 'U(nu)_R.csv'
nu = chr(957)
eps_u = 2.5/100
eps_nu = 0.1/100
data_0 = make_dic(s)
nu_m_0 = 0
U_m_0 = 0
j = 0
for i in range(len(data_0['U'])):
if (data_0['U'][i] >= U_m_0):
U_m_0 = data_0['U'][i]
nu_m_0 = data_0['nu'][i]
j = i
x = data_0['nu']/nu_m_0
y = data_0['U']/U_m_0
eps_nu_0 = abs(data_0['nu'][j-1]-data_0['nu'][j+1])/data_0['nu'][j]
xerr = eps_nu*2**0.5*x
yerr = eps_u*2**0.5*y
xlabel = nu + '/ '+nu+'$_m$'
ylabel = '$U/U_m$'
if r == 0:
caption = 'R = 0'
else:
caption = 'R = 100 Ом'
make_point_grafic(x, y, xlabel, ylabel, caption, xerr, yerr)
plt.grid(True)
cons = 0.727
j1 = len(x)
j2 = len(x)
for i in range(len(x)-1):
if y[i] >= cons and y[i+1] <= cons:
j2 = i
if y[i] <= cons and y[i+1] >= cons:
j1 = i
x1 = x[j1] + (cons - y[j1])*(x[j1+1]-x[j1])/(y[j1+1]-y[j1])
x2 = x[j2] + (cons - y[j2])*(x[j2+1]-x[j2])/(y[j2+1]-y[j2])
x = np.arange(min(x), max(x), step=0.001)
y_fit = [cons for _ in x]
plt.plot(x, y_fit)
Q = 1/abs(x2-x1)
err = Q*(eps_nu**2 +eps_nu_0**2+2*eps_u**2)**0.5
if r == 0: st = 'Q_0 = '
else: st = 'Q_R = '
print(st, Q, '+-', err)
def make_ust():
data = make_dic('ust_0.csv')
tet = -1/data['n'] * \
np.log((data['U_0']-data['U_k+n'])/(data['U_0']-data['U_k']))
Q = np.pi/tet
eps_u = 2.5/100
eps_Q = find_delivation(Q)/np.mean(Q)
sig = np.mean(Q)*(eps_u**2+eps_Q**2)**0.5
print('Q_0 = ', np.mean(Q),'+-', sig)
data = make_dic('ust_R.csv')
tet = -1/data['n'] * \
np.log((data['U_0']-data['U_k+n'])/(data['U_0']-data['U_k']))
Q = np.pi/tet
eps_Q = find_delivation(Q)/np.mean(Q)
sig = np.mean(Q)*(eps_u**2+eps_Q**2)**0.5
print('Q_R = ', np.mean(Q),'+-', sig)
def make_all():
plt.figure(dpi=500, figsize=(8, 5))
make_smth(0)
make_smth(1)
plt.legend()
plt.savefig('graf')
make_ust()
make_all()