2024-03-21 10:28:02 +03:00
|
|
|
{
|
|
|
|
"cells": [
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
2024-11-09 11:24:25 +03:00
|
|
|
"execution_count": 1,
|
2024-03-21 10:28:02 +03:00
|
|
|
"id": "65a1d145-551e-436d-977f-0b9e15aa66a3",
|
|
|
|
"metadata": {
|
|
|
|
"tags": []
|
|
|
|
},
|
|
|
|
"outputs": [],
|
|
|
|
"source": [
|
|
|
|
"# %load /home/glebi/git/experiment-automation/processing_tools.py\n",
|
|
|
|
"import numpy as np\n",
|
|
|
|
"from scipy.optimize import curve_fit\n",
|
|
|
|
"import pandas as pd\n",
|
|
|
|
"\n",
|
|
|
|
"import matplotlib.pyplot as plt\n",
|
|
|
|
"import matplotlib\n",
|
|
|
|
"import scienceplots\n",
|
|
|
|
"\n",
|
|
|
|
"plt.style.use(['science', 'russian-font'])\n",
|
|
|
|
"\n",
|
|
|
|
"matplotlib.rcParams.update({\n",
|
|
|
|
" 'figure.figsize': [6, 4],\n",
|
|
|
|
" 'savefig.facecolor': 'white',\n",
|
|
|
|
" 'figure.dpi': 150.0,\n",
|
|
|
|
" 'font.size': 12.0,\n",
|
2024-11-09 11:24:25 +03:00
|
|
|
"})"
|
2024-03-21 10:28:02 +03:00
|
|
|
]
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
2024-11-09 11:24:25 +03:00
|
|
|
"execution_count": 2,
|
2024-03-21 10:28:02 +03:00
|
|
|
"id": "027f3055-bd02-4cf0-9f6a-8ca35e6b36c8",
|
|
|
|
"metadata": {
|
|
|
|
"tags": []
|
|
|
|
},
|
|
|
|
"outputs": [],
|
|
|
|
"source": [
|
|
|
|
"df = pd.read_csv(\"data.csv\")\n",
|
|
|
|
"cols = df.columns\n",
|
|
|
|
"\n",
|
|
|
|
"U = df[cols[0]] # +- 0.01 mV\n",
|
|
|
|
"I = df[cols[1]] # +- 0.001 mA"
|
|
|
|
]
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
2024-11-09 11:24:25 +03:00
|
|
|
"execution_count": 4,
|
2024-03-21 10:28:02 +03:00
|
|
|
"id": "1a1b6e09-f30a-4e32-b1c3-1097d9d0295c",
|
|
|
|
"metadata": {
|
|
|
|
"tags": []
|
|
|
|
},
|
|
|
|
"outputs": [
|
|
|
|
{
|
|
|
|
"data": {
|
2024-11-09 11:24:25 +03:00
|
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAvoAAAIbCAYAAACaBzryAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAABcSAAAXEgFnn9JSAABRgUlEQVR4nO3dbXBbV57f+R+AvlCnIVHQg7NKNqNYlxpvpbJJS6Asx7s11MQE7Ml482JbABlXQk1HbpHu3XhebLXI1qg4bRWqRgbHXVNrORmR8ihpMVVuCbTmRUrxtgg7ETO1mxFFtDqpGW9txCu1ZjbLF7IIUcKkTTSAfaEATQqPvATx+P1Uqbp1z+W9fxKH1g8H557jyGazWQEAAABoK85GFwAAAACg9gj6AAAAQBsi6AMAAABtiKAPAAAAtCGCPgAAANCGCPoAAABAGyLoAwAAAG3oK40uoFqjo6OKx+Pyer2SpOHhYfn9/sYWBQAAADSppg/6lmUpEAhodHRUkUgkfzwUCsk0TZmmWfbrM5mMfvazn+krX/mKHA7HZpcLAAAA1EU2m9XPf/5zffWrX5XTWThRp6mDfiKRUE9PjyKRiIaGhvLHp6enNT09rRdffFEjIyNlr/Gzn/1MHo9ns0sFAAAAGiKZTOprX/tawfGmDvpnz57Vzp0714R8SfJ6vfJ6vfL5fBWv8ZWvPP0Wk8mkDMNQKpWSx+PJ/32zffnll9q2bZseP36sLVu2bOq96v291fN+7fy9SfSTVrxXve9Xzz4i8bq16v3oJ615P/7N4X5275U7lsu7z2raoJ9IJDQ+Pl50xN7v92tpaamq6+Sm6xiGseYFePbvmyWTydT1fvW+V73v167fG/2kde9Vr/s1oo/U+37t/L3V6370k9a+H//mcD+79yo1Pb1pV92ZnJyUJAUCgZpe1+l06nvf+17ReUytrt7fWz3v187fW72188+ynb+3euN1a9371RP9pPXuVW/t/LrV+3527uXIZrPZTazJtkAgoFgspoWFBcXjcc3NzWnXrl1aWFhQIBBQMBis6jqpVEput1uPHz8uePfjdDrlcrk2o/y8en+MitZEP0El9BFUg36CatBPWlM6nc5/GpOTSqW0bds2raysFP1EoWmD/o4dO5RIJDQxMSHTNNcspdnd3S2/36+JiYmK18kF/WIGBgb0xhtv1KxmAAAAYDN89NFHunz5ctG2lgv6ublGIyMja5bVlKRYLKZAIKCZmZmKa+k3ekQ/lUrpm9/8pv7Fv/gXdZ0rhtZCP0El9BFUg36CatBPWpOdEf2mfRg3p9gc/Vy4Hx0d1fz8fFXX2bJlS0M6s2EY+gf/4B/IMIy2nHuH2qCfoBL6CKpBP0E16CetqdhrVen1a9pXN7cDbqkNsbxer+LxeB0rAgAAAFpH0wb9Sjve5iQSic0tBAAAAGhBTRv0c9NzKgX53Mg/AAAAgF9o2qA/MDAgSbIsq2h7IpGoamdcAAAAoBM1bdD3+Xzy+XxFlxGanp6WJF24cKHeZQEAAAAtoWmDviRFo1HFYrF8sJeejuSPjo4qEokwog8AAACU0NTLa5qmqfn5eY2Ojq4Z2Z+YmKi4fj4AAADQyZo66EtPw340Gm10GQAAAEBLaeqpOwAAAADsafoRfQAAAKDZ3Flc1qUblu4/eKK9u7fq2BFT+/d0NbqsNQj6AAAAwDpMzS7o7Ys3lc5k88fe/+RznTt+WIO93Q2sbK2OmbqTSqWUSqWUTqcbXQoAAABa1J3F5YKQL0npTFZvX7ypO4vLm15DOp3OZ9tyOiboezweud1uhcPhRpcCAACAFnXphlUQ8nPSmaymZotv9lpL4XBYbrdbHo+n7HkdM3UnmUzKMAw5nR3z3gYAAAA1dv/BkwrtyU2vYWxsTKdPn1YqlSob9jsm6BuGIcMwGl0GAAAAWtje3VsrtJcfZa8Fl8sll8tV8TyGtwEAAIAqHTtiyuV0FG1zOR0a7DXrXFFpBH0AAACgSvv3dOnc8cMFYd/ldOiDN19qqiU2O2bqDgAAAFALg73devmF5zQ1a+n+g6T27vZosJd19AEAAICWt39Pl870H2h0GWUxdQcAAABoQwR9AAAAoA0R9AEAAIA2RNAHAAAA2hBBHwAAAGhDBH0AAACgDRH0AQAAgDbUMevop1IpSZLT6ZTL5WpwNQAAAIA96XRamUwmn29L6ZgRfY/HI7fbrXA43OhSAAAAANvC4bDcbrc8Hk/Z8zpmRD+ZTMowDDmdHfPeBgAAAG1obGxMp0+fViqVKhv2OyboG4YhwzAaXQYAAACwIS6Xq6qp6AxvAwAAAG2IoA8AAAC0IYI+AAAA0IYI+gAAAEAbIugDAAAAbYigDwAAALQhgj4AAADQhgj6AAAAQBsi6AMAAABtqGN2xgUAAADsurO4rEs3LN1/8ER7d2/VsSOm9u/panRZZXVM0E+lUpIkp9NZ1ZbBAAAAgCRNzS7o7Ys3lc5k88fe/+RznTt+WIO93XWvJ51OK5PJ5PNtKR0zdcfj8cjtdiscDje6FAAAALSIO4vLBSFfktKZrN6+eFN3FpfrXlM4HJbb7ZbH4yl7XscE/WQyqZWVFY2NjTW6FAAAALSISzesgpCfk85kNTVr1bkiaWxsTCsrK0omk2XP65ipO4ZhyDCMRpcBAACAFnL/wZMK7eXD9mZwuVxVTUXvmBF9AAAAYL327t5aob389JlGIugDAAAAJRw7YsrldBRtczkdGuw161xR9Qj6AAAAQAn793Tp3PHDBWHf5XTogzdfauolNjtmjj4AAABgx2Bvt15+4TlNzVq6/yCpvbs9GuxlHX0AAACg5e3f06Uz/QcaXca6MHUHAAAAaEMEfQAAAKANEfQBAACANkTQBwAAANoQQR8AAABoQwR9AAAAoA11zPKaqVRKkuR0OuVyuRpcDQAAAGBPOp1WJpPJ59tSOmZE3+PxyO12KxwON7oUAAAAwLZwOCy32y2Px1P2vI4Z0U8mkzIMQ05nx7y3AQAAQBsaGxvT6dOnlUqlyob9jgn6hmHIMIxGlwEAAABsiMvlqmoqOsPbAAAAQBsi6AMAAABtiKAPAAAAtKGmDvrj4+MKhUKanp6WZVmSJMuyNDo6qkAg0ODqAAAAgObV9A/jTk9Pa3p6es0x0zQ1Pz/foIoAAACA5tf0QT8YDMqyLCUSCfl8PgUCAQ0NDTW6LAAAAKCpNX3Qj0QiMk2z0WUAAAAALaWp5+gDAAAAsIegDwAAALShpp+6k0gkND4+ri+++CL/90AgoGAw2ODKAAAAgObV9EF/dHRU0WhUXq83f6y7u1uWZWlkZKTq63z55ZfKZDJrjjmdzqq2D96I3D2fvTewGv0EldBHUA36CapBP2lN6XS64DVLpVJlv8aRzWazm1nURliWVfRB3MnJSQ0PD2t+fl4+n6/sNVKplNxud9G2gYEBvfHGGzWpFQAAANgsH330kS5fvly0bWVlRYZhFBxv6qBfimVZ6u7uVjAYVDQaLXtuLug/fvy44AdQrxH9a9eu6fXXX5fTySMRKI5+gkroI6gG/QTVoJ+0plIj+tu2bSsZ9Jt+6k4xO3fulCTF4/Gqv2bLli1FfwD14nQ6+WVCRfQTVEIfQTXoJ6gG/aS1FHutKr1+Tfvqjo+Pa8eOHbIsq+Q5Dx8+rGNFAAAAQOto2qA/MzOjRCKhRCJR0JYL+IcOHapzVQAAAEBraNqg7/P5Sj5sG4vFJEmBQKDeZQEAAAAtoWmD/vDwcMkni6PRqEzTXNfymgAAAEAnadqgb5qmdu3apfHx8TXHR0dHdevWrYqr7QAAAACdrKlX3RkZGVEsFtPw8LAePnyoRCIh0zR19+7dNRtoAQAAAFirqYO+JPn9fvn9/kaXAQAAALSUpp26AwAAAMC+ph/RR2u6s7isSzcs3X/wRHt3b9WxI6b27+lqdFkAAAAdg6CPmvv+v/oTnZn+ibLZXxx7/5PPde74YQ32djeuMAAAgA7C1B3U1Pf/1Z/onejakC9J6UxWb1+8qTuLy40pDAAAoMN0TNBPpVJKpVJKp9ONLqVt3Vlc1pnoT0q2pzNZTc1adaw
|
2024-03-21 10:28:02 +03:00
|
|
|
"text/plain": [
|
|
|
|
"<Figure size 900x600 with 1 Axes>"
|
|
|
|
]
|
|
|
|
},
|
|
|
|
"metadata": {},
|
|
|
|
"output_type": "display_data"
|
|
|
|
}
|
|
|
|
],
|
|
|
|
"source": [
|
2024-11-09 11:24:25 +03:00
|
|
|
"plt.errorbar(U, I, xerr=.01, yerr=.001, fmt=\".\")\n",
|
|
|
|
"plt.xlabel(\"Напряжение, мВ\")\n",
|
|
|
|
"plt.ylabel(\"Сила тока, мА\")\n",
|
|
|
|
"\n",
|
|
|
|
"im = plt.imread(\"vah-osc.jpg\")\n",
|
|
|
|
"# plt.imshow(im)\n",
|
|
|
|
"\n",
|
|
|
|
"plt.grid()\n",
|
|
|
|
"plt.savefig(\"vah.png\")\n",
|
|
|
|
"plt.show()"
|
2024-03-21 10:28:02 +03:00
|
|
|
]
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
2024-11-09 11:24:25 +03:00
|
|
|
"execution_count": 14,
|
2024-03-21 10:28:02 +03:00
|
|
|
"id": "048c8b91-5acd-4705-9989-a543d212c68c",
|
|
|
|
"metadata": {
|
|
|
|
"tags": []
|
|
|
|
},
|
|
|
|
"outputs": [
|
|
|
|
{
|
|
|
|
"name": "stdout",
|
|
|
|
"output_type": "stream",
|
|
|
|
"text": [
|
2024-11-09 11:24:25 +03:00
|
|
|
"xi = 170.3\n",
|
|
|
|
"En_max = 124.3\n"
|
2024-03-21 10:28:02 +03:00
|
|
|
]
|
|
|
|
}
|
|
|
|
],
|
|
|
|
"source": [
|
|
|
|
"Up = 46e-3\n",
|
|
|
|
"Ip = 4.8e-3\n",
|
|
|
|
"Uv = 340.6e-3\n",
|
|
|
|
"Iv = 0.5e-3\n",
|
|
|
|
"e = 1.6e-19\n",
|
|
|
|
"\n",
|
2024-11-09 11:24:25 +03:00
|
|
|
"xi = Uv/2\n",
|
|
|
|
"En_max = xi - Up\n",
|
|
|
|
"print(f\"xi = {xi*1e3:.1f}\\nEn_max = {En_max*1e3:.1f}\")"
|
2024-03-21 10:28:02 +03:00
|
|
|
]
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
|
|
|
"execution_count": null,
|
|
|
|
"id": "a4878798-dbe1-47f5-adae-cc6a2e58bf27",
|
|
|
|
"metadata": {},
|
|
|
|
"outputs": [],
|
|
|
|
"source": []
|
|
|
|
}
|
|
|
|
],
|
|
|
|
"metadata": {
|
|
|
|
"kernelspec": {
|
|
|
|
"display_name": "Python 3 (ipykernel)",
|
|
|
|
"language": "python",
|
|
|
|
"name": "python3"
|
|
|
|
},
|
|
|
|
"language_info": {
|
|
|
|
"codemirror_mode": {
|
|
|
|
"name": "ipython",
|
|
|
|
"version": 3
|
|
|
|
},
|
|
|
|
"file_extension": ".py",
|
|
|
|
"mimetype": "text/x-python",
|
|
|
|
"name": "python",
|
|
|
|
"nbconvert_exporter": "python",
|
|
|
|
"pygments_lexer": "ipython3",
|
|
|
|
"version": "3.10.12"
|
|
|
|
}
|
|
|
|
},
|
|
|
|
"nbformat": 4,
|
|
|
|
"nbformat_minor": 5
|
|
|
|
}
|