152 lines
15 KiB
Plaintext
152 lines
15 KiB
Plaintext
{
|
||
"cells": [
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 9,
|
||
"id": "01d8887a",
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"Text(0, 0.5, 'k')"
|
||
]
|
||
},
|
||
"execution_count": 9,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
},
|
||
{
|
||
"data": {
|
||
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEGCAYAAABo25JHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAfoElEQVR4nO3de3RV9Z338feXQCAgEC4RBQTFCyqtBQ125ml9ei/qmhZnprOq9rGjMmXoiEIkCaCzULwWTq4iKGLxNlbKAKZ0RONIvVasBEFQFAGhQrjILXIxQC7f54+ENGCAANlnn8vntVbWyjl7m/Nxr3A++e29z+9n7o6IiCSvVmEHEBGRcKkIRESSnIpARCTJqQhERJKcikBEJMm1DjvAierevbufffbZYccQEYkrS5Ys2e7uGU1ti7siOPvssykrKws7hohIXDGzvx5tm04NiYgkORWBiEiSUxGIiCQ5FYGISJJTEYiIJLlAi8DMrjSzVWa2xszGNbH9u2b2hZktq/+aEGQeERH5qsBuHzWzFGAq8CNgI7DYzOa7+8ojdn3T3f8hqBwiInJsQX6O4HJgjbt/CmBms4ChwJFFICIix1CytJzJL65k8+6D9ExPI2dIf64Z1KvFfn6Qp4Z6ARsaPd5Y/9yR/t7M3jezF81sQFM/yMyGm1mZmZVt27YtiKwiIjGpZGk5o4qe44N5D1NbU015RSXj562gZGl5i71GkEVgTTx35Co47wF93f0bwBSgpKkf5O6PuXumu2dmZDT5CWkRkYSzZ88ebs0ex74dm+jyg19hKXUncSqraoiUrmqx1wny1NBG4KxGj3sDmxrv4O67G32/wMymmVl3d98eYC4RkZhXWlrKyy+/DBcN4bTTunxl+6aKyhZ7rSBHBIuB883sHDNLBa4F5jfewczOMDOr//7y+jw7AswkIhLTdu7cybhx49i3bx/5+fn06d2zyf16pqe12GsGNiJw92ozGwmUAinATHf/0MxG1G9/FPgZ8GszqwYqgWtdiyiLSBJyd+bOnUtZWRm5ubl07doVgJwh/Rk/bwWVVTUN+6a1SSFnSP8We22Lt/fdzMxM1+yjIpJINm/eTCQS4corr+THP/7xV7aXLC0nUrqKTRWVJ33XkJktcffMprbF3TTUIiKJwt15+umnWbduHffccw+nnXZak/tdM6hXi94ueiRNMSEiEoJ169YxatQozjvvPO6+++6jlkA0aEQgIhJFNTU1TJ8+nS+++ILJkyfTrl27sCOpCEREomXlypU88sgjDBs2jIEDB4Ydp4GKQEQkYFVVVRQXF9O6dWsKCwtp3Tq23npjK42ISIJZsmQJTz75JCNHjqR//5a75bMlqQhERAJQWVlJfn4+GRkZFBcX06pV7N6boyIQEWlhb7zxBvPmzeP222+nT58+Ycc5LhWBiEgL2b17N5FIhAsvvJDCwkLqZ9CJeSoCEZEWsGDBAv70pz+Rk5NDjx49wo5zQmL3pJWISBzYvn07ubm5HDx4kLy8vLgrAdCIQETkpLg7s2fP5v3332f8+PF06fLVqaLjhUYEIiInaNOmTdx+++1069aNBx54IK5LADQiEBFpNnfniSeeYMOGDdx333106NAh7EgtQiMCEZFmWLt2LaNGjeKiiy7irrvuSpgSAI0IRESOqaamhkceeYR9+/YRiURo27Zt2JFanEYEIiJHUfzfC+n97X/mwfdgvg/mxZWJuZy6RgQiIkc4ePAgv8qZyEsf76DdFTdjrVIor6hk/LwVAIEuEhMGjQhERBp59913GTNmDCva9Cdt0E+wVikN2yqraoiUrgoxXTBUBCIiwJdffsk999zD8uXLKS4uZlfrbk3ut6miMsrJgqdTQyKS9F599VX+8Ic/kJ2dTe/evQHomZ5GeRNv+j3T06IdL3AaEYhI0vriiy+488472bJlC4WFhQ0lAJAzpD9pbVIO2z+tTQo5Q2JzTYFToRGBiCSlP/7xj7zxxhvk5uaSkZHxle2HLghHSlexqaKSnulp5Azpn3AXigHM3cPOcEIyMzO9rKws7BgiEqe2bdvG5MmTueKKK/jpT38adpyoMbMl7p7Z1DaNCEQkKbg7s2bN4oMPPuA///M/6dy5c9iRYoauEYhIwtuwYQNZWVmcccYZ3H///SqBI2hEICIJq7a2lpkzZ7Jp0yYeeOAB2rdvH3akmKQRgYgkpNWrVzNq1CguueQSJkyYoBI4Bo0IRCShVFdXM23aNA4cOEB+fj6pqalhR4p5KgIRSRjLly9nxowZ/Pu//ztf+9rXwo4TN1QEIhL3Dhw4QFFRER06dKCoqIiUlJTj/0fSQEUgInHtnXfe4Xe/+x2jRo3i3HPPDTtOXFIRiEhcOrRQTN++fSkuLsbMwo4Ut1QEIhJ3Fi5cyAsvvMCYMWPo1SvxpnyINhWBiMSNiooKJk+ezMCBA8nPz9cooIUEWgRmdiVQDKQAj7v7b46y32DgHeDn7j4nyEwiEp9KSkpYtGgROTk5dO/ePew4CSWwD5SZWQowFbgKuBi4zswuPsp+k4DSoLKISPzaunUr2dnZpKamMmnSJJVAAIIcEVwOrHH3TwHMbBYwFFh5xH63AnOBwQFmEZE4UrK0nMkvfczqt1+k3b6tTJp4J1dfcWHYsRJWkFNM9AI2NHq8sf65BmbWC/hH4NFj/SAzG25mZWZWtm3bthYPKiKxo2RpOdlPLOSDuQ+R0imDlMuv5d6X11OytDzsaAkryCJo6irOkYsfFAFj3b3mWD/I3R9z90x3z2xqAQkRSQy1tbWMuSePHcteIf07/0q7s+o+HZyoi8bHiiBPDW0Ezmr0uDew6Yh9MoFZ9Vf+uwNXm1m1u5cEmEtEYtAnn3zCww8/TGWnfnTu/8OvbE/EReNjRZBFsBg438zOAcqBa4HrG+/g7ucc+t7MngT+RyUgklyqq6t5+OGHqampIT8/nyX5bybNovGxIrBTQ+5eDYyk7m6gj4DZ7v6hmY0wsxFBva6IxI9ly5aRlZXFkCFDGDNmDG3atEmqReNjRaCfI3D3BcCCI55r8sKwu98YZBYRiR379++nsLCQzp07f2WSuGRaND5W6JPFIhJVb7/9Nr///e8ZPXo055xzTpP7XDOol974o0hFICJRsXfvXiKRCP369aOoqEjTQ8QQFYGIBO7ll1+mtLSU7OxszjzzzLDjyBG0ZrGIBGbXrl2MHz+e3bt3k5eXpxKIURoRiEgg5s2bx+LFi8nOzqZbt25hx5Fj0IhARFrUli1byM7OpkOHDjz44IMqgTigEYGItAh355lnnmHt2rXcdddddOzYMexI0kwaEYjIKVu/fj2jR4+mX79+TJw4USUQZzQiEJGTVltby/Tp09m1axeTJk2iXbt2YUeSk6AiEJGT8vHHHzN16lRuuukmLr300rDjyClQEYjICamqqmLKlCkAFBQU0KZNm5ATyalSEYhIsy1dupSZM2dyyy23cOGFWjEsUagIROS49u/fT0FBAV27dqW4uJhWrXSfSSJREYjIMb311lvMmTOHrKws+vbtG3YcCYCKQEQalCwtb5j+uUea06f8FX5yxWUUFhZqkrgEpiIQEaCuBMbPW0FlVQ2Vny7ho/XL2PGtn3H9176jEkhwOtEnIkDdQjB7d+9i12tP4FUH6PL9YVS17axF45OARgQigruz+p3/5cDWNXT6u38hpd1pDdu0aHziUxGIJLnNmzeTl5dHRtce7Lvwxq9s16LxiU9FIJKk3J2nnnqK9evXM3HiRK5Y/UXDNYJDtGh8clARiCShdevWUVRUxM9//nNuvPFGAK4ZVHc6SIvGJx8VgUgSqampYfr06ezevbvJSeK0aHxyUhGIJImVK1fyyCOPMGzYMAYOHBh2HIkhKgKRBHfw4EEeeughWrduTWFhIa1b65+9HE6/ESIJrKysjKeeeopbb72VCy64IOw4EqNUBCIJqLKykvz8fE4//XRNEifHpSIQSTCvv/46zz//PLfffjt9+vQJO47EARWBSILYvXs3kydP5qKLLtIkcXJCVAQiCeCFF17g1VdfJTc3l9NPPz3sOBJndOJQJI5t376d3NxcqqurycvLUwnISdGIQCQOuTuzZ8/m/fff54477iA9PT3sSBLHNCIQiTPl5eXcfvvtdO/enQceeEAlIKdMIwKROOHuzJw5k40bN3LffffRoUOHsCNJgtCIQCQOrF27lttuu40BAwZw1113qQSkRWlEIBIjGq8XfGjmz59ccgbTpk3jyy+/JC8vj7Zt24YdUxJQoCMCM7vSzFaZ2RozG9fE9qFmttzMlplZmZl9O8g8IrHq0HrB5RWVOFBeUcntj/6Rn/7i3/jOd77D2LFjVQISmMBGBGaWAkwFfgRsBBab2Xx3X9lot4XAfHd3M7sEmA1cGFQmkVgVKV3VsCCM11Sxe/EfsDZt2fXd67nkkktCTieJLshTQ5cDa9z9UwAzmwUMBRqKwN33Ntq/A+AB5hGJWYfWBT6waRX7PnyVjpk/pU2XnmzeczDkZJIMgjw11AvY0OjxxvrnDmNm/2hmHwMvADc39YPMbHj9qaOybdu2BRJWJEw92hsVb/2Og9vW0+WHw2nTpSeg9YIlOoIsgqYmOvnKX/zu/ry7XwhcA9zb1A9y98fcPdPdMzMyMlo2pUjIXn31VTI+nkf3y66k4zeGYFb3z1LrBUu0BFkEG4GzGj3uDWw62s7u/gZwrpl1DzCTSMyoqKjgzjvvZOvWrcx/dgZ5N36fXulpGNArPY0H/+nrWjZSoiLIawSLgfPN7BygHLgWuL7xDmZ2HrC2/mLxpUAqsCPATCIxYf78+bz11lvk5ORwaJSr9YIlLIGNCNy9GhgJlAIfAbPd/UMzG2FmI+p3+2fgAzNbRt0dRj93d10wloT1+eefk52dTatWrZg8eTI61SmxwOLtfTczM9PLysrCjiFyQtyd5557jpUrV5KTk0Pnzp3DjiRJxsyWuHtmU9s0xYRIwDZs2EBWVhZnnnkm9913n0pAYo6mmBAJSG1tLb/97W/ZsmULDzzwAO3btw87kkiTVAQiAVi9ejVTpkzhhhtuYPDgwWHHETkmFYFIC6qurmbq1KlUVVWRl5dHampq2JFEjqtZRWBml7n7kiOe+4m7/zGYWCLx5/333+fxxx9nxIgRDBgwIOw4Is3W3BHBDDP7V3dfAWBm1wGjARWBJL0DBw5QWFjIaaedRlFRESkpKWFHEjkhzS2CnwFzzOwXwLeBXwI/DiyVSJxYtGgRzz33HKNHj6Zfv35hxxE5Kc0qAnf/1MyuBUqom0jux+5eGWQwkVi2b98+IpEIffv2pbi4GLOmptYSiQ/HLAIzW8HhE8V1BVKAv5gZ7q6J0iXpvPLKKyxYsIDs7Gx69uwZdhyRU3a8EcE/RCWFSByoqKhg8uTJDBw4kPz8fI0CJGEcswjc/a/RCiISy0pKSli0aBG5ubl069Yt7DgiLUpTTIgcw9atW8nOziY1NZVJkyapBCQh6QNlIk1wd5599lk++eQTJkyYQKdOncKOJBIYjQhEjvDZZ5+RlZVFnz59uOeee1QCkvA0IhCpV1tby4wZM9i+fTsPPvggaWlaL1iSg4pABPjkk0+YMmUKN954I5dddlnYcUSiSkUgSa26uprhY+/jTx9vgYuv4r3//YKcVuVaMlKSiq4RSNJatmwZQ//fr3jty57w9Z9ASmvKKyoZP28FJUvLw44nEjUaEUjS2b9/P4WFhaSnp7Prkuup3X3wsO2VVTVESldpVCBJQyMCSSp//vOfGTt2LNdddx2//vWv2XxECRyyqUJTaUny0IhAksLevXuJRCKce+65FBUVNUwP0TM9jfIm3vR7puuOIUkeKgJJeC+//DIvvfQSOTk5nHnmmYdtyxnSn/HzVlBZVdPwXFqbFHKG9I92TJHQqAgkYe3cuZNIJEJmZiYFBQVN7nPoOkCkdBWbKirpmZ5GzpD+uj4gSUVFIAlp3rx5vPvuu+Tm5tK1a9dj7nvNoF5645ekpovFklC2bNnCmDFj6NChA7/5zW+OWwIiohGBJAh355lnnmHt2rXcfffddOzYMexIInFDIwKJe+vXr29YM3jixIkqAZETpBGBxK3a2lqmT59ORUUFkyZNol27dmFHEolLKgKJSx999BHTpk3j5ptvZtCgQWHHEYlrKgKJK1VVVUyZMgUzo6CggDZt2oQdSSTuqQgkbrz33ns8+eST3HLLLfTvrw98ibQUFYHEvMrKSgoLC+nWrRtFRUW0aqV7HERakopAYtpbb73FnDlzyMrKom/fvmHHEUlIKgKJSXv27CESiXD++edTWFjYMEmciLQ8FYHEnJdeeomFCxeSnZ1Njx49wo4jkvACPdlqZlea2SozW2Nm45rY/gszW17/9baZfSPIPBLbduzYwbhx49i/fz+RSEQlIBIlgY0IzCwFmAr8CNgILDaz+e6+stFu64DvuPsuM7sKeAz4ZlCZJDa5O3PmzGHp0qWMHTuWLl26hB1JJKkEOSK4HFjj7p+6+0FgFjC08Q7u/ra776p/+A7QO8A8EmNKlpYz+I7/Jv2b/8Tdpeu5/F9uUQmIhCDIawS9gA2NHm/k2H/tDwNebGqDmQ0HhgP06dOnpfJJiJ5/byP/cXchlTs30/nbv2Bfahrj560A0JTQIlEW5Iigqds8vMkdzb5HXRGMbWq7uz/m7pnunpmRkdGCESUM69at45Zbb4POZ5L+7V/QKrVuWchDi8aLSHQFOSLYCJzV6HFvYNORO5nZJcDjwFXuviPAPBKympoapk+fzp49e0j9+19C669OD6FF40WiL8gRwWLgfDM7x8xSgWuB+Y13MLM+wDzgBnf/JMAsErKVK1eSlZXFt771LcaOHUuv7p2a3E+LxotEX2AjAnevNrORQCmQAsx09w/NbET99keBCUA3YFr9B4aq3T0zqEwSfQcPHuShhx4iNTWVgoICWreu+5XTovEiscPcmzxtH7MyMzO9rKws7BjSDGVlZTz99NOMHDmSCy644CvbS5aWa9F4kSgxsyVH+0NbnyyWFldZWUl+fj49evQ45iRxWjReJDaoCKRFvf766zz//POMGTOGs8466/j/gYiETkUgLWL37t1EIhEuuugiTRInEmdUBHLKXnjhBV577TVycnI4/fTTw44jIidIK3zISdu+fTtjx46lurqaSCSiEhCJUxoRyAlzd2bPns3y5csZP3486enpYUcSkVOgEYGckPLycsaMGUNGRgb333+/SkAkAWhEIM3i7jzxxBNs3LiRe++9lw4dOoQdSURaiEYEclxr165l1KhRDBgwgAkTJqgERBKMRgRyVDU1NUybNo3KykoikQht27YNO5KIBEBFIE364IMPmD59OsOHD+frX/962HFEJEAqAjnMwYMHKSoqIi0tjcLCwoZJ4kQkcelfeRI62mRv7777Lv/1X//FbbfdxnnnnRd2TBGJEs0+mmRKlpZ/ZfrntlRx2e4/84PLLuSmm2466iRxIhK/NPuoNIiUrjqsBPb/dTk71/yFT354Hb8b9vMQk4lIWFQESebQUpC1B/bxxV/mktq9L12+/2/scE0SJ5KsVARJpmd6GqvLXuPAhg/p9M1/JqV954bnRSQ56WRwEtm2bRsZK2fTtnUKXb53c0MJaIlIkeSmEUEScHdmzZrFhx9+yFNTJvHqp3u1RKSINFARJLgNGzZQUFDA0KFDue666wC4ZlBnvfGLSAMVQYKqra3lt7/9LVu2bOH++++nffv2YUcSkRilIkhAq1evZsqUKdxwww0MHjw47DgiEuNUBAmkurqaqVOnUlVVRV5eHqmpqWFHEpE4oCJIEMuXL2fGjBmMGDGCAQMGhB1HROKIiiDOHThwgKKiIk477TSKiopISUkJO5KIxBkVQRxbtGgRzz33HKNHj6Zfv35hxxGROKUiiEP79u0jEonQt29fiouLMdP0ECJy8lQEceaVV15hwYIFZGdn07Nnz7DjiEgC0BQTcaKiooI77riDnTt3kp+frxIQkRajEUEcKCkpYdGiReTm5tKtW7ew44hIgtGIIIZt3bqV7OxsUlNTmTRpkkpARAKhEUEMcneeffZZVq1axYQJE+jUqVPYkUQkgWlEEGM+++wzsrKy6NOnD/fee69KQEQCpxFBjKitrWXGjBls376dBx98kLQ0LRQjItGhIogBq1at4uGHH+bGG2/ksssuCzuOiCSZQIvAzK4EioEU4HF3/80R2y8EngAuBe5097wg84StZGn5YQvCZH2/Hxv+/Dy1tbUUFBTQpk2bsCOKSBIK7BqBmaUAU4GrgIuB68zs4iN22wncBiR0AUBdCYyft4LyikocWLfqA351y2207jOIMWPGqAREJDRBXiy+HFjj7p+6+0FgFjC08Q7u/rm7LwaqAswREyKlq6isqsGrD/LFotkc2LSKTt/7N2atrg07mogkuSBPDfUCNjR6vBH45sn8IDMbDgwH6NOnz6knC8Gmikr2b1zJlx+/ScfMobRJP6PheRGRMAU5ImhqJjQ/mR/k7o+5e6a7Z2ZkZJxirOjbu3cv1Yt/T3XFZrr8YHhDCQD0TNfdQSISriBHBBuBsxo97g1sCvD1YlJpaSmlpaVMHDuayJufU1lV07AtrU0KOUP6h5hORCTYIlgMnG9m5wDlwLXA9QG+XkzZuXMnkydPZvDgwRQUFADQNePwu4ZyhvTnmkG9Qk4qIskusCJw92ozGwmUUnf76Ex3/9DMRtRvf9TMzgDKgE5ArZmNBi52991B5YqGuXPnsnjxYnJzc+natWvD89cM6qU3fhGJOeZ+UqftQ5OZmellZWVhx2jS5s2biUQiDBkyhCFDhoQdR0SkgZktcffMprbpk8UtwN155plnWLt2LRMnTqRjx45hRxIRaTZNOneK1q9f37BmsEpAROKRRgQnqba2lunTp1NRUcGkSZNo165d2JFERE6KiuAkfPTRR0ybNo1hw4YxcODAsOOIiJwSFcEJqKqqYsqUKZiZJokTkYShImim9957jyeeeIKRI0fSv78+BCYiiUNFcByVlZUUFBTQvXt3iouLadVK19dFJLGoCI7hzTffZO7cuWRlZdG3b9+w44iIBEJF0IQ9e/YQiUS44IILKCwsxKyp+fNERBKDiuAIL774IgsXLiQnJ4cePXqEHUdEJHA64V1vx44djBs3jgMHDpCXl6cSEJGkkfQjAndnzpw5LFu2jLFjx9KlS5ewI4mIRFVSFMGRi8Yfmv5506ZN5OXlcfXVV3P//feHHVNEJBQJP/vooUXjGy8I0651K37c5mO6sZvs7Gw6dOgQRFQRkZiR1LOPHlo0/pCqii3sLPsDrw3+EcsfuSvEZCIisSHhi6Dx4vB7lr1E7f69dPnuzexprekhREQgCYqgZ3oa5fVl0P6CvyelfeeG50VEJAluH80Z0p+0NikADSWgReNFRP4m4UcEh9YI1qLxIiJNS/giAC0aLyJyLAl/akhERI5NRSAikuRUBCIiSU5FICKS5FQEIiJJTkUgIpLk4m7SOTPbBvw17BynqDuwPewQMUTH43A6Hn+jY3G4Uzkefd09o6kNcVcEicDMyo42C2Ay0vE4nI7H3+hYHC6o46FTQyIiSU5FICKS5FQE4Xgs7AAxRsfjcDoef6NjcbhAjoeuEYiIJDmNCEREkpyKQEQkyakIAmRmV5rZKjNbY2bjmtj+CzNbXv/1tpl9I4yc0XC8Y9Fov8FmVmNmP4tmvmhrzvEws++a2TIz+9DMXo92xmhqxr+Vzmb2RzN7v/543BRGzmgws5lm9rmZfXCU7WZmD9Ufq+Vmdukpv6i76yuALyAFWAv0A1KB94GLj9jn/wBd6r+/CvhL2LnDOhaN9vsTsAD4Wdi5Q/7dSAdWAn3qH58edu6Qj8cdwKT67zOAnUBq2NkDOh7/F7gU+OAo268GXgQM+LuWeN/QiCA4lwNr3P1Tdz8IzAKGNt7B3d929131D98Bekc5Y7Qc91jUuxWYC3wezXAhaM7xuB6Y5+6fAbh7Ih+T5hwPBzqamQGnUVcE1dGNGR3u/gZ1/39HMxR42uu8A6Sb2Zmn8poqguD0AjY0eryx/rmjGUZdyyei4x4LM+sF/CPwaBRzhaU5vxsXAF3M7DUzW2Jmv4xauuhrzvF4GLgI2ASsAEa5e2104sWcE31vOa6kWKoyJNbEc03eq2tm36OuCL4daKLwNOdYFAFj3b2m7o++hNac49EauAz4AZAGLDKzd9z9k6DDhaA5x2MIsAz4PnAu8L9m9qa77w44Wyxq9ntLc6kIgrMROKvR497U/TVzGDO7BHgcuMrdd0QpW7Q151hkArPqS6A7cLWZVbt7SVQSRldzjsdGYLu77wP2mdkbwDeARCyC5hyPm4DfeN1J8jVmtg64EHg3OhFjSrPeW06ETg0FZzFwvpmdY2apwLXA/MY7mFkfYB5wQ4L+pXfIcY+Fu5/j7me7+9nAHOA/ErQEoBnHA/gDcIWZtTaz9sA3gY+inDNamnM8PqNudISZ9QD6A59GNWXsmA/8sv7uob8DvnD3zafyAzUiCIi7V5vZSKCUursiZrr7h2Y2on77o8AEoBswrf4v4WpPwJkWm3kskkZzjoe7f2RmLwHLgVrgcXdv8nbCeNfM3497gSfNbAV1p0bGuntCTk9tZs8B3wW6m9lG4C6gDTQciwXU3Tm0BviSutHSqb1m/e1IIiKSpHRqSEQkyakIRESSnIpARCTJqQhERJKcikBEJMmpCEREkpyKQEQkyakIRE6BmZ1tZh+b2eNm9oGZPWtmPzSzP5vZajO7POyMIsejIhA5decBxcAl1M1/cz11EwhmUzePvkhMUxGInLp17r6iflrkD4GF9ZOjrQDODjWZSDOoCERO3YFG39c2elyL5vOSOKAiEBFJcioCEZEkp9lHRUSSnEYEIiJJTkUgIpLkVAQiIklORSAikuRUBCIiSU5FICKS5FQEIiJJ7v8Dqcd96mlKCvEAAAAASUVORK5CYII=\n",
|
||
"text/plain": [
|
||
"<Figure size 432x288 with 1 Axes>"
|
||
]
|
||
},
|
||
"metadata": {
|
||
"needs_background": "light"
|
||
},
|
||
"output_type": "display_data"
|
||
}
|
||
],
|
||
"source": [
|
||
"import matplotlib.pyplot as plt\n",
|
||
"\n",
|
||
"#прямоугольники\n",
|
||
"\n",
|
||
"#картинки\n",
|
||
"#1) tau = 50 мкс, f = 1 кГц\n",
|
||
"#2) tau = 50 мкс, f = 1.5 кГц\n",
|
||
"#3) tau = 50 мкс, f = 0.5 кГц\n",
|
||
"#4) tau = 100 мкс, f = 1 кГц\n",
|
||
"#5) tau = 75 мкс, f = 1 кГц\n",
|
||
"\n",
|
||
"#tau = 50 мкс, f = 1 кГц\n",
|
||
"#кГц\n",
|
||
"a_n = [1, 2.003, 3.005, 4.007, 5.01, 6.012, 7.014]\n",
|
||
"#мВ\n",
|
||
"f_n = [415.9, 395.6, 366.0, 327.2, 299.4, 279.1, 251.4]\n",
|
||
"\n",
|
||
"#мкс\n",
|
||
"tau = [20, 40, 60, 80, 100, 120, 140, 160, 180, 200] #со 180 скачет\n",
|
||
"#кГц\n",
|
||
"delta_nu1 = [50, 25, 17.01, 12.51, 10.04, 8.012, 7.01, 6.008, 5.571, 4.928] \n",
|
||
"\n",
|
||
"#цуги\n",
|
||
"\n",
|
||
"#6) f = 50 кГц, T = 1 мс, N = 5\n",
|
||
"#7) f = 50 кГц, T = 1 мс, N = 7\n",
|
||
"#8) f = 50 кГц, T = 1 мс, N = 10\n",
|
||
"#9) f = 50 кГц, T = 1.5 мс, N = 5\n",
|
||
"#10) f = 50 кГц, T = 0.5 мс, N = 5\n",
|
||
"#11) f = 100 кГц, T = 1 мс, N = 5\n",
|
||
"\n",
|
||
"#мс\n",
|
||
"T = [0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5]\n",
|
||
"#кГц\n",
|
||
"delta_nu2 = [2, 1.02, 0.65, 0.5, 0.39, 0.33, 0.29, 0.25, 0.21, 0.19]\n",
|
||
"\n",
|
||
"#гаусс(???)\n",
|
||
"\n",
|
||
"#12) f = 1 кГц\n",
|
||
"#13) f = 1 кГц\n",
|
||
"#14) f = 1 кГц\n",
|
||
"\n",
|
||
"#am\n",
|
||
"\n",
|
||
"# A_max = 1.26 V, A_min = 0.42 V\n",
|
||
"\n",
|
||
"#15) f = 50 кГц, f_mod = 2 кГц, m = 0.5\n",
|
||
"\n",
|
||
"m = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1]\n",
|
||
"#mV\n",
|
||
"a_max = 537.9\n",
|
||
"a_min = [27.73, 53.6, 81.33, 105.4, 131.2, 162.7, 186.7, 212.6, 238.4, 266.2]\n",
|
||
"\n",
|
||
"m_2 =[]\n",
|
||
"for i in range(10):\n",
|
||
" a_min[i] /= a_max\n",
|
||
" m_2.append(m[i]/2) \n",
|
||
"\n",
|
||
"#pm\n",
|
||
"\n",
|
||
"#16) f = 50 кГц, f_mod = 2 кГц, phi = 10\n",
|
||
"#17) f = 50 кГц, f_mod = 2 кГц, phi = 50\n",
|
||
"#18) f = 50 кГц, f_mod = 2 кГц, phi = 90\n",
|
||
"#19) f = 50 кГц, f_mod = 10 кГц, phi = 10\n",
|
||
"#20) f = 100 кГц, f_mod = 2 кГц, phi = 10\n",
|
||
"\n",
|
||
"\n",
|
||
"\n",
|
||
"\n",
|
||
"#21) T = 6 мкс, tau = 0.3 мкс осциллограмма\n",
|
||
"#22) T = 6 мкс, tau = 0.3 мкс спектр\n",
|
||
"#23) T = 6 мкс, tau = 0.5 мкс осциллограмма\n",
|
||
"#24) T = 6 мкс, tau = 0.5 мкс спектр\n",
|
||
"#25) T = 6 мкс, tau = 0.1 мкс осциллограмма\n",
|
||
"#26) T = 6 мкс, tau = 0.1 мкс спектр\n",
|
||
"\n",
|
||
"#мВ\n",
|
||
"a_filter = [68.39, 35.12, 22.18, 16.64, 12.01]\n",
|
||
"a_0 = [250.5, 244.9, 254.2, 244.9, 217.2]\n",
|
||
"\n",
|
||
"\n",
|
||
"plt.scatter(m, a_min)\n",
|
||
"plt.plot(m, m_2, color = 'black', linewidth = 0.5)\n",
|
||
"plt.xlabel('m')\n",
|
||
"plt.ylabel('k')\n",
|
||
"\n"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"id": "718aeb2a",
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": []
|
||
}
|
||
],
|
||
"metadata": {
|
||
"kernelspec": {
|
||
"display_name": "Python 3 (ipykernel)",
|
||
"language": "python",
|
||
"name": "python3"
|
||
},
|
||
"language_info": {
|
||
"codemirror_mode": {
|
||
"name": "ipython",
|
||
"version": 3
|
||
},
|
||
"file_extension": ".py",
|
||
"mimetype": "text/x-python",
|
||
"name": "python",
|
||
"nbconvert_exporter": "python",
|
||
"pygments_lexer": "ipython3",
|
||
"version": "3.9.12"
|
||
}
|
||
},
|
||
"nbformat": 4,
|
||
"nbformat_minor": 5
|
||
}
|