Silaev/auto/3.2.5/325.ipynb
2022-10-22 15:03:41 +03:00

150 lines
14 KiB
Plaintext

{
"cells": [
{
"cell_type": "code",
"execution_count": 5,
"id": "5dabef1c",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"0.11293824972675794\n",
"0.01226740102904371\n",
"0.0938096382728547\n",
"0.009262073610238137\n",
"0.40123743304422665\n",
"0.041224279574892234\n",
"0.40493839466080334\n",
"0.019640130500072135\n"
]
},
{
"data": {
"text/plain": [
"<matplotlib.collections.LineCollection at 0x1ff88333ac0>"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD4CAYAAAD8Zh1EAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAcc0lEQVR4nO3df3DU953f8ecbReTWloPc2CeDoAeNqRyCFTAyTuv0KoWm4FxtiM8hxj176h5D3Anx5TqnGm5uMCF3NSl/kHjslDAu48lMG42uxRwkpGoHz9bX/GiAQxbgWDmV+IIk+xzHET7Z2yDg3T++q7BaVtJXq+/ud/e7r8cMI30/38/u9/3Rd3npq893v981d0dERKrfnLgLEBGRaCjQRUQSQoEuIpIQCnQRkYRQoIuIJMT74trwTTfd5IsXLy7qse+++y7XX399tAVVOI25NmjMtWE2Yz558uRb7n5zoXWxBfrixYs5ceJEUY9Np9O0t7dHW1CF05hrg8ZcG2YzZjP7m8nWacpFRCQhFOgiIgmhQBcRSQgFuohIQijQRUQSYtpAN7MDZvammZ2ZZL2Z2dNmNmBmfWZ2R/RlSi05fvgbvLHzVhju5Y2dt3L88DfiLkmkKoQ5Qn8eWDfF+nuApdl/W4D/OPuypFYdP/wNlp/8E27h52BwCz9n+ck/UaiLhDBtoLv7S8DbU3RZD3zTAz8EGs1sflQFSm1Z9Fd7SNnFCW0pu8iiv9oTU0Ui1cPC3A/dzBYD33b35QXWfRvY7e7/O7t8DHjC3a+5asjMthAcxdPU1LSqq6urqKJHR0dpaGgo6rHVqmbGPNwLFnw7+v4FNPxqOFhwYMGKmIoqn5rZzzk05pnp6Og46e5thdZFcaWoFWgr+FvC3fcD+wHa2tq82CuldGVZcr2xc3Mw3QKkW75Ee/+TQTs3c8tDA3GWVha1sp9zaczRieJdLoPAopzlhcBwBM8rNej8HZ1kfO6EtozP5fwdnTFVJFI9ogj0w8Aj2Xe7fAy44O6vR/C8UoPuvO9znFn1p7zBzeDBkfmZVX/Knfd9Lu7SRCretFMuZvYtoB24ycwGgSeBegB33wccBT4FDADvAY+WqlipDXfe9zm473O8mk5zy0MD3BJ3QSJVYtpAd/dN06x34PORVSQiIkWJ7fa5IrkOnRpiT08/wyMZFjSm6FzbApkx7t794oS2DSub4y5VpGIp0KV8+rrh2C64MAjzFsKaHQC8990d3PfeG7T5B/kPczZyeOTjdP75y/zB8ksMjdQBMDSSYfvB0wAKdZFJKNClPPq64cjjMJYJli+ch7/4PLhz3ZUxMFhob7G7/jkYg8NXPk7+NRKZscvs6elXoItMQjfnkvI4tutqmI+7fBGujE1ous4u8u/e1z3p0wyPZCZdJ1LrFOhSHhcGQ3ddYL+YfF1jKopqRBJJgS7lMW9h6K7D/kHq5xhmEy9CTtXXBSdLRaQgBbqUx5odUJ93dF03F+bUT2h6z+fy3NzfY89nPsrCG1M0N6YwoLkxxVP33675c5Ep6KSolEfrxuBrgXe55LZdt2YHO7N90+m/5nvb2uOpV6QKKdClfFo3Xg32/HYRmTVNuYiIJIQCXUQkIRToIiIJoUAXEUkIBbqISEIo0EVEEkKBLiKSEAp0EZGEUKCLiCSEAl1EJCFCBbqZrTOzfjMbMLNtBdbfaGYvmFmfmf3IzJZHX6pUhb5u2LscdjYGX/smv7d52VVybSIRmDbQzawOeBa4B1gGbDKzZXnd/hjodfdW4BHga1EXKlVg/FOJLpwHPPh65PHKCM5Krk0kImGO0FcDA+5+zt0vAl3A+rw+y4BjAO7+KrDYzJoirVQqX6FPJRrLBO1xq+TaRCJi+Z/beE0HsweAde6+Obv8MHCXu2/N6fPvgd9w939rZquB72f7nMx7ri3AFoCmpqZVXV1dRRU9OjpKQ0NDUY+tVlUx5td7J183f8WMny7SMUdcW6lUxX6OmMY8Mx0dHSfdva3QujC3z7UCbfm/BXYDXzOzXuA0cAq4dM2D3PcD+wHa2tq8vb09xOavlU6nKfax1aoqxrx3a3ZKI8+8RbDpzIyfLtIxR1xbqVTFfo6YxhydMFMug8CinOWFwHBuB3d/x90fdfcVBHPoNwM/japIqRKFPpWoPnX1gyziVMm1iUQkTKAfB5aa2RIzmws8CBzO7WBmjdl1AJuBl9z9nWhLlYrXuhHufTo46sWCr/c+XRkfYFHJtYlEZNopF3e/ZGZbgR6gDjjg7mfN7LHs+n3Ah4Fvmtll4BXg90tYs1SyyT6VqBJUcm0iEQj1EXTufhQ4mte2L+f7HwBLoy1NRERmQleKiogkhAJdRCQhFOgiIgmhQBcRSYhQJ0VFSuHQqSH29PQzPJJhQWOKzrUtbFjZHHdZIlVLgS6xOHRqiO0HT5MZuwzA0EiG7QdPAyjURYqkKReJxZ6e/l+H+bjM2GX29PTHVJFI9VOgSyyGRzIzaheR6SnQJRYLGlMzaheR6SnQJRada1tI1ddNaEvV19G5tiWmikSqn06KSizGT3zqXS4i0VGgS2w2rGxWgItESFMuIiIJoUAXEUkIBbqISEIo0EVEEkKBLiKSEHqXi1QN3cxLZGoKdKkKupmXyPRCTbmY2Toz6zezATPbVmD9PDM7YmYvm9lZM3s0+lIldn3dsHc57GwMvvZ1l23TsdzMK8bxihRj2iN0M6sDngU+CQwCx83ssLu/ktPt88Ar7n6vmd0M9JvZf3b3iyWpWsqvrxuOPA5j2ZtnXTgfLAO0biz55st+M6+YxytSjDBH6KuBAXc/lw3oLmB9Xh8HbjAzAxqAt4FLkVYq8Tq262q4jRvLBO1lUPabecU8XpFimLtP3cHsAWCdu2/OLj8M3OXuW3P63AAcBm4DbgA+6+7fKfBcW4AtAE1NTau6urqKKnp0dJSGhoaiHlutYh/z672Tr5u/oiSbzB3zSGaMoV9muJLzep1jRvONKRpT9dFvPIbxQgXs5xhozDPT0dFx0t3bCq0Lc1LUCrTl/xZYC/QCnwA+BPxPM/tLd39nwoPc9wP7Adra2ry9vT3E5q+VTqcp9rHVKvYx790aTDvkm7cINp0pySbzx1zWd7nEMF6ogP0cA405OmECfRBYlLO8EBjO6/MosNuDw/0BM/spwdH6jyKpUuK3ZsfEOWWA+lTQXiZlvZlXBYxXZKbCzKEfB5aa2RIzmws8SDC9kutnwBoAM2sCWoBzURYqMWvdCPc+HRyhYsHXe59O7gnCWhuvJMK0R+jufsnMtgI9QB1wwN3Pmtlj2fX7gC8Dz5vZaYIpmifc/a0S1i1xaN1YW4FWa+OVqhfqwiJ3PwoczWvbl/P9MPDPoy1NRERmQvdyERFJCAW6iEhCKNBFRBJCgS4ikhAKdBGRhFCgi4gkhAJdRCQhFOgiIgmhQBcRSQgFuohIQijQRUQSQoEuIpIQCnQRkYRQoIuIJIQCXUQkIRToIiIJoUAXEUkIBbqISEIo0EVEEiJUoJvZOjPrN7MBM9tWYH2nmfVm/50xs8tm9veiL1dKpq8b9i6HnY3B177uuCuqPvoZSszM3afuYFYH/AT4JDAIHAc2ufsrk/S/F/hDd//EVM/b1tbmJ06cKKro3q9+lRUjI0U9tlq99tprLF68uDRP/rdnof+7cGXsatucemi5B5o+UppthlDSMUctop9hVY05IrU45t7GRlZ88YtFPdbMTrp7W6F17wvx+NXAgLufyz5ZF7AeKBjowCbgW8UUGtbIihXQ3l7KTVSc19JpFpdqzHuXQ1MdUDexfd6P4Q//vDTbDGGqMR86NcSenn6GRzIsaEzRubaFDSuby1tgroh+hiXdzxWqFsc8kk6X5HnDHKE/AKxz983Z5YeBu9x9a4G+1xEcxd/q7m8XWL8F2ALQ1NS0qqurq6iiR0dHaWhoKOqx1aqkY369d/J181eUZpshTDbmkcwYQ7/McCXntTvHjOYbUzSm6stZ4lUR/Qz12q4NsxlzR0fHrI7QrUDbZL8F7gW+VyjMAdx9P7AfgimX9iJ/K6fTaYp9bLUq6Zj3boUL569tn7cINp0pzTZDmGzMd+9+kaGRumvamxvr+N62a/uXRUQ/Q722a0OpxhzmpOggsChneSEwPEnfBynxdIuUwJodUJ+a2FafCtor0PBIZkbtZVFlP0NJpjBH6MeBpWa2BBgiCO2H8juZ2TzgnwK/F2mFUnqtG4Ovx3bBhUGYtzAIovH2CEUx972gMcVQgfBe0Jgq0LtMyvgzFJnMtIHu7pfMbCvQQ3DG54C7nzWzx7Lr92W7fhr4H+7+bsmqldJp3Vjy8Dl0aojtB0+TGbsMwNBIhu0HTwPMKNQ717ZMeB6AVH0dnWtboi14psrwMxSZSpgjdNz9KHA0r21f3vLzwPNRFSbJs6enf0IIA2TGLrOnp39GgT7et6Le5SJSAUIFukgUopz73rCyWQEukkeX/kvZTDbHHevct0iCKNClbDrXtpCqn/h2w4qY+xZJCE25SNlo7luktBToUlaa+xYpHU25iIgkhAJdRCQhFOgiIgmhQBcRSQgFuohIQijQRUQSQoEuIpIQCnQRkYRQoIuIJIQCXUQkIRToIiIJoUAXEUkIBbqISEKECnQzW2dm/WY2YGbbJunTbma9ZnbWzP5XtGWKiMh0pg10M6sDngXuAZYBm8xsWV6fRuDrwH3u/hHgM9GXKkXr64a9y2FnY/C1rzvuiqSQvm548xXtJylamCP01cCAu59z94tAF7A+r89DwEF3/xmAu78ZbZlStL5uOPI4XDgPePD1yOMKi0ozvp8uX0T7SYoVJtCbgfM5y4PZtlz/ELjRzNJmdtLMHomqQJmlY7tgLO9DmMcyQbtUDu0niYC5+9QdzD4DrHX3zdnlh4HV7v6FnD7PAG3AGiAF/AD4HXf/Sd5zbQG2ADQ1Na3q6uoqqujR0VEaGhqKemy1KnrMr/dOvm7+imLLKYua2s/Z/TT6/gU0/Gp44roK30+zVVP7OWs2Y+7o6Djp7m2F1oX5CLpBYFHO8kJguECft9z9XeBdM3sJ+CgwIdDdfT+wH6Ctrc3b29tDDSBfOp2m2MdWq6LHvHdrdrolz7xFsOnMrOsqpZraz9n9lG75Eu39T15tr4L9NFs1tZ+zSjXmMFMux4GlZrbEzOYCDwKH8/r8BfBPzOx9ZnYdcBfw42hLlaKs2QH1qYlt9amgXSqH9pNEYNojdHe/ZGZbgR6gDjjg7mfN7LHs+n3u/mMz++9AH3AFeM7dk31YUS1aNwZfj+2CC4Mwb2EQEuPtUhnG98erbwGm/SRFCTPlgrsfBY7mte3LW94D7ImuNIlM60YFQzVo3Qhvp2HjSNyVSJXSlaIiIgmhQBcRSYhQUy4ixTp0aog9Pf0Mj2RY0Jiic20LG1bmX8ZQPdsRqWQKdCmZQ6eG2H7wNJmxywAMjWTYfvA0QKRhW67tiFQ6TblIyezp6f91yI7LjF1mT09/VW5HpNIp0KVkhkcyM2qv9O2IVDoFupTMgsbUjNorfTsilU6BLiXTubaFVH3dhLZUfR2da1uqcjsilU4nRaVkxk9IlvrdJ+XajkilU6BLSW1Y2VyWYC3XdkQqmaZcREQSQoEuIpIQCnQRkYRQoIuIJIQCXUQkIRToIiIJoUAXEUkIBbqISEIo0EVEEiJUoJvZOjPrN7MBM9tWYH27mV0ws97sP31UuYhImU176b+Z1QHPAp8EBoHjZnbY3V/J6/qX7v4vSlCj5OrrhmO74MKgPhlewtFrpmaEuZfLamDA3c8BmFkXsB7ID3Qptb5uOPI4jGXv833hfLAM+g8qhek1U1PCTLk0A+dzlgezbfn+kZm9bGbfNbOPRFKdTHRs19X/mOPGMkG7SCF6zdQUc/epO5h9Bljr7puzyw8Dq939Czl9PgBccfdRM/sU8DV3X1rgubYAWwCamppWdXV1FVX06OgoDQ0NRT22Wo2OjtLwdwOTd5i/omy1lEvN7ucox/x67+TrKuQ1o/08Mx0dHSfdva3QujBTLoPAopzlhcBwbgd3fyfn+6Nm9nUzu8nd38rrtx/YD9DW1ubt7e3hRpAnnU5T7GOrVTqdpv2vnwv+ZM43bxFsOlP+okqsZvdzlGPeu7XiXzPaz9EJM+VyHFhqZkvMbC7wIHA4t4OZ3WJmlv1+dfZ5fxF1sTVvzQ6oz/tYtfpU0C5SiF4zNWXaI3R3v2RmW4EeoA444O5nzeyx7Pp9wAPAvzGzS0AGeNCnm8uRmRs/iaV3LEhYes3UlFCfWOTuR4GjeW37cr5/Bngm2tKkoNaN+s8oM6PXTM3QR9BJIh06NaTPGJWao0CXxDl0aojtB0+TGbsMwNBIhu0HTwMo1CXRdC8XSZw9Pf2/DvNxmbHL7Onpj6kikfJQoEviDI9kZtQukhQKdEmcBY2pGbWLJIUCXSJ16NQQd+9+kSXbvsPdu1/k0KmhstfQubaFVH3dhLZUfR2da1vKXotIOemkqESmUk5Gjm9L73KRWqNAl8hMdTKy3GG6YWWzAlxqjqZcJDI6GSkSLwW6REYnI0XipUCXyOhkpEi8NIcukdHJSJF4KdAlUjoZKRIfTbmIiCSEAl1EJCEU6CIiCaFAFxFJCAW6iEhC6F0uUhP0CUZSC0IdoZvZOjPrN7MBM9s2Rb87zeyymT0QXYkJ1NcNe5fDzsbga1933BUl2vhNw4ZGMjhXbxoWx50ga5pe9yU3baCbWR3wLHAPsAzYZGbLJun3FaAn6iITpa8bjjwOF84DHnw98rhe3CWkTzCqAHrdl0WYI/TVwIC7n3P3i0AXsL5Avy8A/w14M8L6kufYLhjLu1nVWCZol5LQTcMqgF73ZWHuPnWHYPpknbtvzi4/DNzl7ltz+jQD/wX4BPCfgG+7+38t8FxbgC0ATU1Nq7q6uooqenR0lIaGhqIeG7vXeydfN3/FpKuqesxFimrM/W/8HRcvX7mmfW7dHFpuuWHWzx+lxO7nKV73ozfcmswxT2E2+7mjo+Oku7cVWhfmpKgVaMv/LfBV4Al3v2xWqHv2Qe77gf0AbW1t3t7eHmLz10qn0xT72Njt3Zr9szPPvEWw6cykD6vqMRcpqjGP5H3wBgQ3DXvq/ttpr7ATo4ndz1O87tPzn0nmmKdQqv0cZsplEFiUs7wQGM7r0wZ0mdlrwAPA181sQxQFJs6aHVCfdzvZ+lTQLiWxYWUzT91/O82NKQxobkzx1P23610u5aTXfVmEOUI/Diw1syXAEPAg8FBuB3dfMv69mT1PMOVyKLoyE6R1Y/D12C64MAjzFgYv6vF2KQndNCxmU73u0+lYS0uSaQPd3S+Z2VaCd6/UAQfc/ayZPZZdv6/ENSZP60YFuNQeve5LLtSFRe5+FDia11YwyN39X82+LKkWumBHpHLoSlEp2qG8k43jF+wACnWRGOheLlI0XbAjUlkU6FI0XbAjUlkU6FK0BY2pGbWLSGkp0KVonWtbSNXXTWhL1dfRubYlpopEaptOikrRxk986l0uIpVBgS6zogt2RCqHplxERBJCR+hSs3RRlCSNAl1qki6KkiTSlIvUJF0UJUmkQJeapIuiJIkU6FKTdFGUJJECXWbk0Kkh7t79Iku2fYe7d7/IoVNDcZdUFF0UJUmkk6ISWpJOJOqiKEkiBbqENtWJxGoMQl0UJUmjKRcJTScSRSqbAl1C04lEkcqmQJfQdCJRpLKFCnQzW2dm/WY2YGbbCqxfb2Z9ZtZrZifM7OPRlxqDvm7Yuxx2NgZf+7rjrihWG1Y289T9t9PcmMKA5sYUT91/u+ahRcLIzZM3XylJnkx7UtTM6oBngU8Cg8BxMzvs7q/kdDsGHHZ3N7NWoBu4LfJqy6mvG448DmPZ+eEL54NlqOlPLteJRJEi5OfJ5YslyZMwR+irgQF3P+fuF4EuYH1uB3cfdXfPLl4PONXu2K6rP/xxY5mgXURkJsqUJ3Y1hyfpYPYAsM7dN2eXHwbucvetef0+DTwF/CbwO+7+gwLPtQXYAtDU1LSqq6urqKJHR0dpaGgo6rGhvd47+br5K0q77QLKMuZJjGTG+NsL/4+Ll68wt24OTfN+g8ZUfcm3G+eY46IxJ1Renoy+fwENvxoOFmaYJx0dHSfdva3QujDvQ7cCbdf8FnD3F4AXzOy3gS8D/6xAn/3AfoC2tjZvb28PsflrpdNpin1saHu3BtMs+eYtgk1nSrvtAsoy5gIOnRpi+7HTZMbmMP4HXar+Mk/dv6zkUy9xjTlOGnNC5eVJuuVLtPc/GXmehJlyGQQW5SwvBIYn6+zuLwEfMrObZllbvNbsgPq8t+PVp4L2GqK7EopEoEx5EibQjwNLzWyJmc0FHgQO53Yws1vNzLLf3wHMBX4RaaXl1roR7n06+A2KBV/vfbrmTojqYiKRCOTnSd3ckuTJtFMu7n7JzLYCPUAdcMDdz5rZY9n1+4DfBR4xszEgA3zWp5ucrwatG2suwPMtaEwxVCC8dTGRyAzl5kk6Da3tkW8i1L1c3P0ocDSvbV/O918BvhJtaVIJOte2TLghF+hiIpFKpZtzyZR0V0KR6qFAl2npYiKR6qB7uYiIJIQCXUQkIRToIiIJoUAXEUkIBbqISEJMe3Oukm3Y7OfA3xT58JuAtyIspxpozLVBY64Nsxnzb7n7zYVWxBbos2FmJya721hSacy1QWOuDaUas6ZcREQSQoEuIpIQ1Rro++MuIAYac23QmGtDScZclXPoIiJyrWo9QhcRkTwKdBGRhKjoQDezdWbWb2YDZratwPp5ZnbEzF42s7Nm9mgcdUYpxJhvNLMXzKzPzH5kZsvjqDMqZnbAzN40s4IfrGiBp7M/j77sJ2JVtRBjvs3MfmBmvzKzPyp3faUQYsz/Mrt/+8zs+2b20XLXGLUQY16fHW+vmZ0ws4/PeqPuXpH/CD4d6f8C/4DgI+1eBpbl9flj4CvZ728G3gbmxl17ice8B3gy+/1twLG4657lmH8buAM4M8n6TwHfJfiw8o8B/yfumssw5t8E7gT+DPijuOst05j/MXBj9vt7amQ/N3D1PGYr8Opst1nJR+irgQF3P+fuF4EuYH1eHwduyH6eaQNBoF8qb5mRCjPmZcAxAHd/FVhsZk3lLTM6Hnyo+NtTdFkPfNMDPwQazWx+eaorjenG7O5vuvtxYKx8VZVWiDF/391/mV38IcGH0Ve1EGMe9WyaA9cT5NmsVHKgNwPnc5YHs225ngE+DAwDp4E/cPcr5SmvJMKM+WXgfgAzWw38Fgl48U8hzM9EkuX3Cf4qSzwz+7SZvQp8B/jXs32+Sg50K9CW/xtsLdALLABWAM+Y2QdKW1ZJhRnzbuBGM+sFvgCcorr/KplOmJ+JJISZdRAE+hNx11IO7v6Cu98GbAC+PNvnq+SPoBsEFuUsLyQ4Es/1KLA7+2fLgJn9lGBe+UflKTFy047Z3d8hGDfZqaafZv8lVZjXgSSAmbUCzwH3uPsv4q6nnNz9JTP7kJnd5O5F36isko/QjwNLzWyJmc0FHgQO5/X5GbAGIDuP3AKcK2uV0Zp2zGbWmF0HsBl4KRvySXUYeCT7bpePARfc/fW4i5JomdnfBw4CD7v7T+KupxzM7NbsQRnZd2/NBWb1i6xij9Dd/ZKZbQV6CN79ccDdz5rZY9n1+wj+RHnezE4T/Gn+xGx+u8Ut5Jg/DHzTzC4DrxD8eVq1zOxbQDtwk5kNAk8C9fDr8R4leKfLAPAe2b9Oqtl0YzazW4ATwAeAK2b2RYJ3O1XtL+4Q+3kH8EHg69mMu+RVfgfGEGP+XYKDlTEgA3w25yRpcduc5eNFRKRCVPKUi4iIzIACXUQkIRToIiIJoUAXEUkIBbqISEIo0EVEEkKBLiKSEP8fdf/5lLqUj3IAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"import matplotlib.pyplot as plt\n",
"import numpy as np\n",
"\n",
"nu = [1588, 1581, 1571, 1561, 1552, 1541, 1531, 1522, 1601, 1596, 1612, 1620, 1630, 1640, 1651, 1663]\n",
"v = [30, 26.5, 21, 17.5, 14, 11.5, 10, 9, 30, 31, 25, 21.5, 17.5, 14.5, 12.5, 10.5]\n",
"\n",
"for i in range(len(v)):\n",
" nu[i] /= 1596\n",
" v[i] /= 31\n",
" \n",
"fig, ax = plt.subplots()\n",
"\n",
"plt.scatter(nu, v)\n",
"\n",
"nu_100 = [1597, 1583, 1571, 1528, 1505, 1480, 1447, 1407, 1349, 1553, 1653, 1685, 1718, 1759, 1817, 1905, 2073]\n",
"u_100 = [3, 2.9, 2.9, 2.4, 2.1, 1.8, 1.5, 1.2, 0.9, 2.7, 2.7, 2.4, 2.1, 1.8, 1.5, 1.2, 0.9]\n",
"\n",
"for i in range(len(u_100)):\n",
" nu_100[i] /= 1597\n",
" u_100[i] /= 3\n",
" \n",
"plt.scatter(nu_100, u_100)\n",
"\n",
"n = [0] * 4\n",
"u = [0] * 4\n",
"\n",
"n[0] = [0, 2, 10, 19, 12, 4, 7]\n",
"u[0] = [1.12, 0.2, 0.72, 1, 0.8, 0.38, 0.58]\n",
"\n",
"n[1] = [0, 2, 4, 7, 12, 19, 27]\n",
"u[1] = [1.12, 1, 0.78, 0.6, 0.38, 0.2, 0.1]\n",
"\n",
"n[2] = [0, 1, 2, 3, 4, 5, 6]\n",
"u[2] = [280, 65, 135, 185, 215, 240, 250]\n",
"\n",
"n[3] = [0, 1, 2, 3, 4, 5, 6]\n",
"u[3] = [280, 230, 150, 100, 70, 45, 30]\n",
"\n",
"for i in range(len(u[1])-1):\n",
" u[1][i+1] = u[1][0] - u[1][i+1]\n",
"for i in range(len(u[3])-1):\n",
" u[3][i+1] = u[3][0] - u[3][i+1]\n",
"\n",
"theta = [[], [], [], []]\n",
"avg_theta = [0] * 4\n",
"sigma_theta = [0] * 4\n",
"\n",
"for k in range(4):\n",
" for i in range(len(n[k]) - 1):\n",
" for j in range(len(n[k]) - i - 2):\n",
" theta[k].append(np.abs(np.log((u[k][0] - u[k][i+1]) / (u[k][0] - u[k][j+i+2])) / (n[k][j+i+2] - n[k][i+1])))\n",
" avg_theta[k] += theta[k][-1] \n",
" \n",
" avg_theta[k] /= len(theta[k])\n",
" print(avg_theta[k])\n",
" for i in range(len(theta[k])):\n",
" sigma_theta[k] += (avg_theta[k] - theta[k][i]) **2\n",
" sigma_theta[k] /= (len(theta[k])-1) \n",
" print(np.sqrt(sigma_theta[k]))\n",
" \n",
"ax.grid()\n",
"ax.hlines(0.707, 0.8, 1.3, color = 'red', linewidth = 0.5)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "1b8c0678",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"id": "13da0f9f",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.12"
}
},
"nbformat": 4,
"nbformat_minor": 5
}