Московский физико-технический институт

Лабораторная работа 3.5.1

Изучение плазмы газового разряда в неоне

выполнил студент группы Б02-103 Силаев Вадим

Аннотация

В работе проведено исследование плазмы газового разряда: определено состояние разряда по его вольт-амперной характеристике, определены основные параметры плазмы, такие как температура и концентрация электронов, плазменная частота и дебаевский радиус. Параметры плазмы вычислены из данных, полученных путём измерения вольт-амперных характеристик с помощью двойного зонда. Полученные результаты позволили заявить о квазинейтральности и идеальности исследуемой плазмы.

Введение

Плазма — состояние ионизированного газа, при котором поведение содержащихся в нем заряженных частиц приобретает коллективный характер, но система при этом остается квазинейтральной. В этом состоянии газ приобретает ряд новых свойств и параметров, которые невозможно описать моделью газа с небольшой примесью заряженных частиц, что вынуждает использовать иную модель. В таком случае возникает проблема определения параметров плазмы, для решения которой разработана методика, позволяющая расчитать их путем обработки данных вольт-амперных характеристик тлеющего разряда и двойного зонда, расположенного в сосуде с плазмой. Искомыми параметрами плазмы являются: температура и концентрация электронов, плазменная частота колебаний, электронная поляризационная длина и дебаевский радиус.

Методика

Для исследования типа газового разряда логично измерить его вольт-амперную характеристику (BAX) и сравнить полученный участок с известной зависимостью, указанной в источнике 1.

Для исследования плазмы важно знать о её электрических свойствах:

- электроны плазмы колеблятся с (плазменной) частотой равной $\omega_p = \sqrt{\frac{4\pi n_e e^2}{m_e}},$ где n_e концентрация электронов, e элементарный заряд, m_e масса электрона
- амплитуда колебаний (электронная поляризационная длина) $r_{De} = \sqrt{\frac{k_{\rm B}T_e}{4\pi n_e e^2}},$ где $k_{\rm B}$ постоянная Больцмана, T_e температура электронов.
- при температуре ионов $T_i \ll T_e$ они экранируются электронами, поэтому $r_D = \sqrt{\frac{k_B T_i}{4\pi n_e e^2}}$ (Дебаевский радиус экранирования)
- количество электронов в сфере с Дебаевским радиусом $N_D = \frac{4}{3}\pi n_i r_D^3$, где n_i концентрация ионов, причем если $N_D \gg 1$, то это говорит об идеальности

Таким образом, используемая методика будет основана на измерении электрических характеристик плазмы. В работе использована схема измерения ВАХ плазмы с помощью двойного зонда. При таком методе измерения теоретическая зависимость будет иметь вид:

$$I = I_{iH} \tanh \frac{eU}{2k_{\rm B}T_e} + AU,$$

где U и I — измеряемые напряжение и ток, $I_{i\mathrm{H}}$ — ионный ток насыщения (максимальное значение ионной составляющей тока через одиночный зонд), A — константа определенная неидеальностью системы.

Ввиду сложности аппроксимации реальной зависимости, используется приближенная форма (аргумент гиперболического тангенса считается малым, значение A также считается малым), которая даёт возможность получить приближенные искомые значения, исходя из наклона графика BAX в начале координат (k_0):

$$k_{\rm B}T_e = \frac{eI_{i\rm H}}{2k_0}$$

Схема установки

Схема установки для исследования плазмы газового разряда в неоне представлена на рис. 1. Стеклянная газоразрядная трубка имеет холодный (не нагреваемый) полый катод, три анода и геттерный узел — стеклянный баллон, на внутреннюю поверхность которого напылена газопоглощающая плёнка (геттер). Трубка наполнена изотопом неона 22 Ne при давлении 2 мм рт. ст. Катод и один из анодов (I или II) с помощью переключателя Π_1 подключаются через балластный резистор R_6 (~ 500 кОм) к регулируемому высоковольтному источнику питания (ВИП) с выходным напряжением до нескольких киловольт.

При подключении к ВИП анода-I между ним и катодом возникает газовый разряд. Ток разряда измеряется миллиамперметром A_1 , а падение напряжения на разрядной трубке — вольтметром V_1 , подключённым к трубке через высокоомный (несколько десятков МОм) делитель напряжения с коэффициентом $(R_1 + R_2) / R_2$.

При подключении к ВИП анода-II разряд возникает в пространстве между катодом и анодом-II, где находится двойной зонд, используемый для диагностики плазмы положительного столба. Зонды изготовлены из молибденовой проволоки диаметром d и имеют длину l. Они подключены к источнику питания через потенциометр R. Переключатель Π_2 позволяет изменять полярность напряжения на зондах. Величина напряжения на зондах изменяется с помощью дискретного переключателя "V" выходного напряжения источника питания и потенциометра R, а измеряется вольтметром V_2 . Для измерения зондового тока используется микроамперметр A_2 . Анод-III в работе не используется. [1]

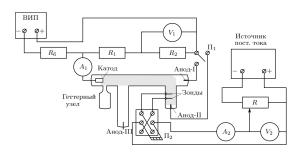


Рис. 1: Схема установки для исследования газового разряда

Результаты и их обсуждение

Измерение вольт-амперной характеристики разряда

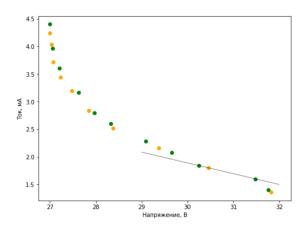


Рис. 2: Вольт-амперная характеристика разряда Зеленые точки — увеличение напряжения Оранжевые точки — снижение напряжения

На графике (рис. 2) виден участок с отицательным дифференциальным сопротивлением, что (согласно зависимости из источника 1) говорит о состоянии разряда между нормальным и поднормальным участками.

Измерение зондовых характеристик



Рис. 3: Зондовые характеристики Зеленая кривая — $I_{\rm p}=5\,{\rm mA}$ Оранжевая кривая — $I_{\rm p}=3\,{\rm mA}$ Фиолетовая кривая — $I_{\rm p}=1,5\,{\rm mA}$

По зондовым характеристикам (см. рис. 3) определим токи насыщения и наклоны характеристик в начале координат. Используя формулы из методики получаем значения характеристик плазмы:

$I_{\rm p}$, мА	I_{iH} , мкА	k_0 , MKA/B	$T_e, 10^3 \mathrm{K}$	$n_e, 10^{15} \mathrm{m}^{-3}$
5	83.0 ± 2.0	$15,5 \pm 2,0$	$31,0 \pm 5,0$	14.0 ± 2.0
3	44.0 ± 1.0	$8,7 \pm 1,3$	29.0 ± 4.0	$8,0 \pm 1,0$
1,5	22.0 ± 1.0	4.4 ± 0.8	29.0 ± 3.0	4.0 ± 0.7

	$I_{\rm p}$, мА	$\omega_p,10^3\mathrm{pag/c}$	$r_{De}, 10^{-6} \mathrm{M}$	$r_D, 10^{-7} \mathrm{m}$	N_D
	5	70.0 ± 6.0	97.0 ± 9.0	97.0 ± 9.0	53
	3	53.0 ± 5.0	$124,0 \pm 11,0$	$124,0 \pm 11,0$	64
Г	1,5	$38,0 \pm 4,0$	$176,0 \pm 16,0$	$176,0 \pm 16,0$	91

Малый по сравнению с характерными размерами установки Дебаевский радиус позволяет заявить о квазинейтральности плазмы, а большое число ионов в Дебаевской сфере о её идеальности.

Выводы

На ВАХ разряда получен характерный изгиб, отвечающий переходу газового разряда между нормальным и поднормальным участками тлеющего разряда. Также плазму в эксперименте можем считать квазинейтральной, так как характерные размеры областей рассмотрения плазмы значительно больше её дебаевского радиуса,а среднее число ионов в дебаевской сфере $N_D\gg 1$, поэтому плазму можно считать ещё и идеальной. Однако опрделение коэффициента наклона в начале координат вносит большой вклад в погрешность эксперимента, чего можно избежать путём построения зависимости по большему количеству точек снятых при помощи автоматизированной установки и использования точной формулы для зависимости тока от напряжения.

Список литературы

- 1. Лабораторный практикум по общей физике. В 3 томах. Том 2. Электричество и магнетизм: учебное пособие под ред. А. В. Максимычева, М. Г. Никулина, 2019.-370 с.
- 2. Д.В. Сивухин. Общий курс физики. В 5-ти томах. Том 3. Электричество М.: Наука, 1977. 704 с.