## Министерство науки и высшего образования Российской Федерации МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ

## ОТЧЁТ О ВЫПОЛНЕНИИ ЛАБОРАТОРНОЙ РАБОТЫ

# Электрооптический эффект Поккельса

Работу выполнил, студент ЛФИ группы Б02-111

\_\_\_\_ Дмитренко А.М.

Долгопрудный 2023

## Реферат

В работе исследуется интерференция обыкновенного и необыкновенного луча при прохождении кристалла LiNbO3 и наблюдается изменение поляризации света, проходящего через кристалл, вследствие приложения переменного и постоянного электрического напряжения. В отсутствии внешнего поля вычисляется необычный показатель преломления. При приложении постоянного напряжения на кристалл, оценивая яркость изображения на экране, находим полуволновое напряжение  $U_{\lambda/2}$ . Прикладывая переменное напряжение и выводя сигнал с фотодетсктора на осциллограф, находим  $U_{\lambda/2}$  вторым способом.

# Содержание

| Вв                               | едение   |                                                                                         | 4  |  |  |  |
|----------------------------------|----------|-----------------------------------------------------------------------------------------|----|--|--|--|
| 1                                | Методи   | ИКА                                                                                     | 5  |  |  |  |
|                                  | 1.1      | Описание установки                                                                      | 5  |  |  |  |
|                                  | 1.2      | Определение $n_e$ в кристалле LiNbO3 $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$ | 6  |  |  |  |
|                                  | 1.3      | Определение полуволнового напряжения $U_{\lambda/2}$                                    | 7  |  |  |  |
| 2                                | Обсуж    | дение результатов                                                                       | 8  |  |  |  |
|                                  | 2.1      | Поиск $n_e$                                                                             | 8  |  |  |  |
|                                  | 2.2      | Поиск $U_{\lambda/2}$ при постоянном напряжении                                         | 9  |  |  |  |
|                                  | 2.3      | Поляризация света при постоянном $U = U_{\lambda/4}$                                    | 10 |  |  |  |
|                                  | 2.4      | Поиск $U_{\lambda/2}$ при переменном напряжении                                         | 10 |  |  |  |
| Заключение                       |          |                                                                                         |    |  |  |  |
| Список использованных источников |          |                                                                                         |    |  |  |  |
| А                                | А Данные |                                                                                         |    |  |  |  |

## Введение

В оптических экспериментах и не только существует большая потребность в высокочастотной модуляции поляризации пучков и интесивности, частоты излучения, а также в точном сканировании лучей. Как пример можно привести работу приемопередатчиков с использованием обработки радиочастотного сигнала. Для этих целей используют приборы, в принципе действия которых лежит явление изменения необычной диэлектрической проницаемости кристаллов в зависимости от внешних условий, например давления, температуры или магнитного поля. Большая часть этих устройств работает на основе электрооптического эффекта Поккельса — явления изменения коэффициента преломления света под действием электрического поля. Его преимущества состоят в относительной безынерционности (частота модуляции может достигать десятков ГГц) и линейности зависимости показателя преломления от электрического поля.

В данной работе исследуется изменение поляризации и интесивности света в зависимости от приложенного напряжения. Результаты этой работы позволяют предсказать, какая амплитуда напряжения на кристалле даёт наибольшую интенсивность выходного луча, а при какой - его поляризация будет круговой.

## 1 Методика

### 1.1 Описание установки

Оптическая часть установки представлена на рис. 1.



Рисунок 1 — Принципиальная схема установки.

Свет гелий-неонового лазера, поляризованный в вертикальной плоскости, проходя сквозь матовую пластинку, рассеивается и падает на двоякопреломляющий кристалл под различными углами. Кристалл ниобата лития с размерами 3 × 3 × 26 мм вырезан вдоль оптической оси Z. На экране, расположенном за скрещенным поляроидом, видна интерференционная картина. Убрав рассеивающую пластинку и подавая на кристалл постоянное напряжение, можно величиной напряжения влиять на поляризацию луча, вышедшего из кристалла. Заменив экран фотодиодом и подав на кристалл переменное напряжение, можно исследовать поляризацию луча с помощью осциллографа. Тогда схема примет вид, изображённый на рис. 2



Рисунок 2 — Схема для изучения двойного лучепреломления в электрическом поле.

### 1.2 Определение $n_e$ в кристалле LiNbO3

Рассмотрим сначала кристалл в отсутствие внешнего электрического поля. Кристалл ниобата лития является одноосным кристаллом с оптической осью Z. Для световой волны, для которой  $\overline{E} \perp OZ$ , показатель преломления равен  $n_0$ , а для волны, у которой вектор  $\overline{E} \parallel OZ$ , он равен  $n_e$ , причём  $n_e < n_o$ , т. е. LiNbO3 — «отрицательный кристалл». В общем случае, когда волновой вектор луча  $\overline{k}$  лежит под углом  $\theta$  к оптической оси Z (рис. 1), существуют два собственных значения показателя преломления n1 и n2: если  $\overline{E}$  перпендикулярен плоскости (k,Z), то волна называется обыкновенной («о» — ординарная), а показатель преломления  $n_1 = n_o$  и не зависит от угла  $\theta$ ; когда  $\overline{E} \subset (\overline{k}, OZ)$  — это необыкновенная («е» — экстраординарная) волна, при этом показатель преломления n2 определяется уравнением [1]:

$$\frac{1}{n_2^2} = \frac{\cos^2\theta}{\varepsilon_o} + \frac{\sin^2\theta}{\varepsilon_e} \tag{1}$$

Если воспользоваться справедливым параксиальным приближением ( $sin\theta = \theta, cos\theta = 1 - \theta^2/2$ ), из (1) получим:

$$n_2 = n_o - (n_o - n_e)\theta^2,$$
 (2)

где  $n_o = \sqrt{\varepsilon_o}, n_e = \sqrt{\varepsilon_e}$ 

Используется метод нахождения  $n_e$ , основанный на том, что для  $E_{\parallel} \subset (\overline{k}, OZ)$  и  $E_{\perp} \perp (\overline{k}, OZ)$  компонент  $\overline{E}$  в кристалле будет набегать разная фаза. Отставание одной компоненты от другой [2]

$$\Delta \varphi = \frac{2\pi}{\lambda} l(n_2 - n_o), \tag{3}$$

где l - длина кристалла,  $\lambda$  – длина волны в воздухе.

Учитывая (2), получаем:

$$\Delta \varphi = \frac{2\pi}{\lambda} l(n_o - n_e)\theta^2, \tag{4}$$

Т.о., в зависимости от угла  $\theta$  меняется поляризация (кроме случаев, когда  $\overline{k}, \overline{E}, OZ$  лежат в одной плоскости), а значит, поставив на выходе поперечный поляризатор, мы не пропустим лучи с  $\Delta \varphi = 2\pi m$ . Геометрическое место точек, куда они падают, есть концентрические окружности с радиусом  $r_m$ .

Если L — расстояние от центра кристалла до экрана, то, учитывая закон преломления (закон Снеллиуса) на границе кристалла, при малых углах  $heta_{out} = n_o heta$ (рис. 1) получаем выражение для радиуса кольца [3]:

$$r_m^2 = \frac{l}{\lambda} \frac{(n_o L)^2}{n_o - n_e} m \tag{5}$$

#### Определение полуволнового напряжения $U_{\lambda/2}$ 1.3



При наложении внешнего электрическо- $(X,Y) \perp OZ$  возникают оптические оси  $\xi,\eta$  с разными показателями преломления. В описании лабораторной то (

Рисунок 3 — эффект Поккельса

Линейность эффекта: 
$$\Delta n = AE_{\text{внеш}}$$
  
 $I_{\text{вых}} = I_0 sin^2 \left(\frac{\Delta \varphi}{2}\right) = I_0 sin^2 \left(\frac{\pi}{2} \frac{U}{U_{\lambda/2}}\right) (6)$ 

Здесь  $U_{\lambda/2} = \frac{\lambda}{4A} \frac{d}{l}$  (7) - полуволновое напряжение

## 2 Обсуждение результатов

## **2.1** Поиск *n<sub>e</sub>*

Собрав установку по рис. 1 и поставив поперечный поляризатор на выходе, получаем на экране такую картинку:



Рисунок 4 — Интерференционная картина света, прошедшего через рассеивающую пластинку и одноосный кристалл, при скрещенных входном и выходном поляризаторах

Из формулы (5) <br/>  $\to n_e=n_o-\frac{l(n_oL)^2}{\lambda k},$ где k - коэф. линейной зависимости<br/>  $r_m^2(m).$ Измерим на экране радиусы колец.

На основе таблицы 1 в приложении построен график  $r_m^2(m)$  (рис. 5).



Рисунок 5 — Квадрат радиуса тёмных колец интерференционной картины при скрещенных поляризаторах.

L = 345 мм. Для  $\lambda = 0,63$  мкм (длина волны гелий-неонового лазера) в ниобате лития  $n_o = 2,29$ .

$$n_e = 2,16 \pm 0,01$$

## 2.2 Поиск $U_{\lambda/2}$ при постоянном напряжении

Уберём матовую пластинку на входе луча в кристалл и поставим поляризатор на горизонтальное разрешённое направление - свет не попадает на экран. Прикладывая постоянное напряжение U наблюдаем изменение яркости изображения. При  $U = U_{\lambda/2}$  яркость максимальна. Из наблюдений:

 $U_{\lambda/2} = 570 \pm 15$  В - скрещенные поляризаторы

Если повернуть анализатор (поляризатор на выходе) на 90°, то при  $U = U_{\lambda/2}$ яркость минимальна. Из наблюдений:

 $U_{\lambda/2} = 630 \pm 15$ В - продольные поляризаторы

Таким образом, при  $U=U_{\lambda/2}$ кристалл LiNbO3 эквивалентен пластинке $\lambda/2.$ 

### 2.3 Поляризация света при постоянном $U = U_{\lambda/4}$

Подадим на кристалл  $U_{\lambda/4} = \frac{1}{2}U_{\lambda/2} \approx 300$  В. Поворачиваем анализатор и убеждаемся, что яркость картинки не меняется. Это означает, что поляризация света из линейной вдоль вертикали превратилась в круговую (или эллиптичскую, близкую к круговой), т.е. при  $U = U_{\lambda/4}$  кристалл LiNbO3 эквивалентен пластинке  $\lambda/4$ .

### 2.4 Поиск $U_{\lambda/2}$ при переменном напряжении

Собрав схему по рис. 2, можно наблюдать на экране осциллографа фигуры Лиссажу, соответствующие  $I_{\rm Bbix}(U)$  при поперечном и параллельном расположении анализатора.



Рисунок 6 — Фигуры Лиссажу при скрещенных входном и выходном поляризаторах

В ходе эксперимента выяснилось, что у генератора есть некоторое минимальное U0 > 0, из-за чего при изменении амплитуды напряжения кривые менялись несимметрично. Чтобы найти  $U_{\lambda/2}$ , как  $\Delta U$ , соответствующее переходу от максимума к минимуму сигнала на осциллограмме [3], усредним значение  $U_{min}$ , при котором сигнал минимален, для левой и для правой ветки фигуры Лиссажу.

 $U_{\lambda/2} = \Delta U = 390$  B.

## Заключение

В работе изучена интерференция рассеянного света, прошедшего кристалл ниобата лития: получена линейная зависимость квадрата радиуса темного кольца интерференционной картины от номера минимума  $r_m^2(m)$ , (ошибка углового коэффициента 4%).

Рассмотрен эффект Поккельса: несколькими способами определено полуволновое напряжение, оно оказалось разным для разных методов.

Очевидно, для постоянного напряжения  $U_{\lambda/2}$  не зависит от взаимного расположения поляризатров в схеме, так как полуволновое напряжение - характеристика самого кристалла. Предположительно, из-за заниженной погрешности значения  $U_{\lambda/2}$  при постоянном U, значения для скрещенной и параллельной поляризации не совпали.

Получены фигуры Лиссажу, отражающие зависимость интенсивности выходного сигнала от подаваемой амплитуды напряжения I(U) при скрещенных и параллельных поляризациях. При повороте анализатора на 90°, фигура Лиссажу переворачивалась.

|                   | постоянное напряжение,                | постоянное напряжение, | переменное |  |
|-------------------|---------------------------------------|------------------------|------------|--|
|                   | скрещенные поляризации                | парал. поляризации     | напряжение |  |
| $U_{\lambda/2}$ B | $570 \pm 15$                          | $630 \pm 15$           | 390        |  |
| $n_e$             | $2,16 \pm 0,01$ (табличное: 2,20 [4]) |                        |            |  |

Таблица 1 — найденные величины

### Список использованных источников

1. *Сивухин, Д.В.* Общий курс физики. Т. IV. Оптика / Д.В. Сивухин. — Москва: Физматлит. — 656 с.

2. *А.В., Максимычев.* Лабораторный практикум по общей физике: учеб. пособие. В трёх томах. Т. 2. Оптика / Максимычев А.В., Александров Д.А., Берюлёва Н.С. — Москва: МФТИ, 2014. — 446 с.

3. *МФТИ, кафедра общей физики*. Эффект Поккельса / кафедра общей физики МФТИ. — Москва, 2005. — 11 с.

4. LiNbO3 Ниобат лития. http://photonica.pro/2018/05/20/linbo3-niobat-litiya-2/.

# Приложение А Данные

| m | $r_m$ , MM | $r_m^2$ , $\mathrm{MM}^2$ | $\Delta r_m^2$ , mm <sup>2</sup> |
|---|------------|---------------------------|----------------------------------|
| 1 | 9          | 81                        | 54                               |
| 1 | 9          | 81                        | 54                               |
| 2 | 15         | 225                       | 60                               |
| 2 | 12         | 144                       | 48                               |
| 3 | 19         | 361                       | 76                               |
| 3 | 17         | 289                       | 68                               |
| 4 | 23         | 529                       | 69                               |
| 4 | 20.5       | 420                       | 62                               |
| 5 | 26.5       | 702                       | 80                               |
| 5 | 23.5       | 552                       | 71                               |

Таблица А.1 — Измерения тёмных колец интерференционной картины при поперечном выходном поляризаторе