
IT6800 series Frame Format

Programmable DC Power Supply

Model IT6821/IT6822/IT6823/

IT6831/IT6832/IT6833/IT6834

© Copyright 2004 All Rights Reserved Ver2.0 /Sep 2005/ IT6800-603

Directory

.3
.4
.5
.5 .5
.6
.6 .6 .7

About your safety

Pease review the following safety precautions before operating our equipment.

General information

The following safety precautions should be observed before using this product and any associated instrumentations. Although some instruments and accessories would be used with non-hazardous voltages, there are situations where hazardous conditions may be present.

This product is intended for use by qualified personnel who recognize shock hazards and are familiar with the safety precautions required to avoid possible injury. Read and follow all installation, operation, and maintenance information carefully before using the product. Refer to this manual for complete product specifications. If the product is used in a manner not specified, the protection provided by the product may be impaired.

Before performing any maintenance, disconnect the line cord and all test cables.

Protection from electric shock

Operators of this instrument must be protected from electric shock at all times. The responsible body must ensure that operators are prevented access and/or insulated from every connection point. In some cases, connections must be exposed to potential human contact. Product operators in these circumstances must be trained to protect themselves from the risk of electric shock. If the circuit is capable of operating at or above 1000 volts, no conductive part of the circuit may be exposed.

Definition of users

Responsible body is the individual or group responsible for the use and maintenance of equipment is operated within its specifications and operating limits, and for ensuring that operators are adequately trained.

Operators use the product for its intended function. They must be trained in electrical safety procedures and proper use of the instrument. They must be protected from electric shock and contact with hazardous live circuits.

Service is only to be performed by qualified service personnel. Safety symbols and terms

Connect it to safety earth ground using the wire recommended in the user manual.

The symbol on an instrument indicates that the user should refer to the operating instructions located in the manual.

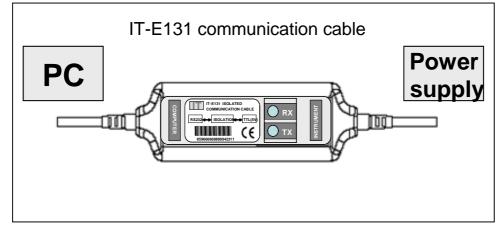
Certification

We certify that this product met its published specifications at time of shipment from the factory.

Warranty

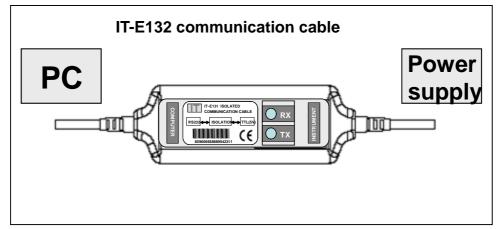
This instrument product is warranted against defects in material and workmanship for a period of one year from date of delivery. During the warranty period we will, at its option, either repair or replace products which prove to be defective. For warranty service, with the exception of warranty options, this product must be returned to a service facility designated by us. Customer shall prepay shipping charges by (and shall pay all duty and taxes) for products returned to the supplier for warranty service. Except for products returned to customer from another country, supplier shall pay for return of products to customer.

Limitation of Warranty


The foregoing warranty shall not apply to defects resulting from improper or inadequate maintenance by the Customer, Customer-supplied software or interfacing, unauthorized modification or misuse, operation outside of the environmental specifications for the product, or improper site preparation and maintenance.

Chapter 1 Remote Operation Mode

The DB9 interface connector on the rear panel of the power supply can be transferred to RS-232 interface, the following information will tell you how to use the computer to control the output of the power supply.


1.1 IT-E131 RS232 Communication cable

The DB9 interface connector on the rear panel of power supply is TTL voltage level; you can use the communication cable (IT-E131) to connect the DB9 interface connector of the power supply and the RS-232 interface connector of computer for the communication.

1.2 IT-E132 USB Communication cable

The DB9 interface connector on the rear panel of power supply is TTL voltage level; you can use the communication cable (IT-E132) to connect the DB9 interface connector of the power supply and the USB interface connector of computer for the communication.



Chapter 2 IT6800 Communication

2.1 Communication setting

Before using the remote operation mode, please make sure that the baud rate and communication address in power supply are the same as in the computer software, otherwise, the communication will fail, you can change the baud rate and communication address from the front panel or from computer.

- 1. Address: the range is from 0 to 254, default setting is 0
- 2. Baud rate: 4800,9600,19200 and 38400 are selectable, default setting is 4800
- 3. Data bit: 8 bit
- 4. Stop bit: 1
- 5. Parity: None

2.2 Frame format

Frame length is 26 bytes, the format is as follows:

StartAddressCommand4-25 bytes are information contentCheck sum
--

Description:

- 1. Start bit is AAH, occupies a byte.
- 2. Address range is 0 to FE, occupies a byte.
- 3. Command occupies a byte.
 - a. 20H----Setting the remote control mode
 - b. 21H----Setting the output ON/OFF state
 - c. 22H----Setting the maximum output voltage
 - d. 23H----Setting the output voltage
 - e. 24H----Setting the output current
 - f. 25H----Setting the communication address
 - g. 26H----Reading the present current/voltage, maximum voltage, setup voltage/current and operation states of the power supply.
 - h. 27H----Enter the calibration mode
 - i. 28H----Reading the calibration mode state
 - j. 29H----Calibrate voltage value.
 - k. 2AH----Sending the actual output voltage to calibration program.
 - I. 2BH----Calibrate current value.

- m. 2CH----Sending the actual output current to calibration program.
- n. 2DH----Save the calibration data to EEPROM.
- o. 2EH----Setting calibration information.
- p. 2FH----Reading calibration information.
- q. 31H----Reading product's model, series number and version information.
- r. 32H----Restoring the factory default calibration data.
- s. 37H----Enable the local key.
- t. 12H---- The return information of command operation in power supply.
- Note: You must change the power supply to remote control mode firstly, then you can control the power supply output by computer. The command for remote control is 20H_o

If you want to calibrate the power supply, set the calibration information or want to set the product serial number, you must set the calibration protection mode to OFF state firstly; the command for calibration protection is 27H.

- 4. 4th to 25th bytes are information content
- 5. 26th byte is check sum, the sum of the former 25 bytes.

2.3 Communication protocol

3 1 1 1 1 1 1 1 1 1 1		
1 st byte	Start bit(AAH)	
2 nd byte Address(0~0XFE)		
3 rd byte	Command (20H)	
4 th byte	Operation mode(0 represent front panel operation mode	
	represent remote operation mode)	
5 th to 25 th byte	System reserve	
26 th byte	Check sum	

1. Setting the remote control mode (20H)

Note: You can not control the power supply from the front panel when the power supply is in calibration mode.

1 st byte	Start bit (AAH)
2 nd byte	Address(0~0XFE)
3 rd byte	Command (21H)
4 th byte	Output state(0 is OFF, 1 is ON)

2. Setting the output state ON/OFF (21H)

5 th to 25 th byte	System reserve
26 th byte	Check sum

Setting the maximum output voltage (221)		
1 st byte	Start bit (AAH)	
2 nd byte	Address(0~0XFE)	
3 rd byte	Command (21H)	
4 th byte	The lowest byte of voltage upper limit	
5 th byte	The lower byte of voltage upper limit	
6 th byte	The higher byte of voltage upper limit	
7 th byte	The highest byte of voltage upper limit	
8 th to 25 th byte	System reserve	
26 th byte	Check sum	

3. Setting the maximum output voltage (22H)

Note: We use 4 bytes of Hex number to represent a maximum voltage value. For example the maximum voltage is 16.000V, the hex code of 16.000 is 0X00003EB0, so the 4th byte is 0XB0, 5th bye is 0X3E, 6th byte is 0X00, 7th byte is 0X00.

4. Setting the output voltage (23H)

1 st byte	Start bit (AAH)	
2 nd byte	Address(0~0XFE)	
3 rd byte	Command (23H)	
4 th byte	The byte 0 of output voltage value	
5 th byte	The byte 1 of output voltage value	
6 th byte	The higher byte of output voltage value	
7 th byte	The highest byte of output voltage value	
8 th to 25 th byte	System reserve	
26 th byte	Check sum	

Note: We use 4 bytes of Hex number to represent an output voltage value. For example the output voltage value is 16.000V and the hex code of 16.000 is 0X00003EB0, so the 4th byte is 0XB0, 5th byte is 0X3E, 6th byte is 0X00, 7th byte is 0X00.

•••			
	1 st byte	Start bit (AAH)	
ſ	2 nd byte	Address (0~0XFE)	
ſ	3 rd byte	Command (24H)	
	4 th byte	To set the low byte of current value	
F	5 th byte	To set the high byte of current value	
ſ	6 th to 25 th byte	System reserve	
	26 th byte	Check sum	

5. Setting the output current (24H)

Note: We use 2 bytes of Hex number to represent an output current value. For example the output current value is 1.000A, the hex code of 1.000 is 0X03E8, so the 4th byte is 0XE8, 5th bye is 0XE3.

6. Setting the communication address (25H)

1 st byte	Start bit (AAH)
2 nd byte	The current address of power supply(0~0XFE)
3 rd byte	Command(25H)
4 th byte	The new address
5 th to 25 th byte	System reserve
26 th byte	Check sum

7. Reading the present current/voltage, maximum voltage, setup voltage/current and the states of power supply. (26H)

1 st byte	Start bit (AAH)	
2 nd byte	Address(0~0XFE)	
3 rd byte	Command (26H)	
4 th byte	Byte 0 of present output current value	
5 th byte	Byte 1 of present output current value	
6 th byte	Byte 0 of present output voltage value	
7 th byte	Byte 1 of present output voltage	
8 th byte	Byte 2 of present output voltage	
9 th byte	Byte 3 of present output voltage	
10 th byte	Power supply's state	
11 th byte	To set the low byte of current value	
12 th byte	To set the high byte of current value	
13 th byte	Byte 0 of the maximum voltage value	
14 th byte	Byte 1 of the maximum voltage value	
15 th byte	Byte 2 of the maximum voltage value	
16 th byte	Byte 3 of the maximum voltage value	
17 th byte	Byte 0 of output voltage value	
18 th byte	Byte 1 of output voltage value	

19 th byte	Byte 2 of output voltage value	
20 th byte	Byte 3 of output voltage value	
21 st to 25 th byte	System reserve	
26 th byte	Check sum	

Note:

1. We use 4 bytes to represent the maximum voltage value as follows:

Byte 3	Byte 2	Byte1	Byte
			0

2. We use 1 byte to represent power supply's state. Each bit is defined as follows:

	Fron	n hi	gher	[.] bit	to I	owe	er bit

	7	6	5	4	3	2	1	0	
--	---	---	---	---	---	---	---	---	--

- 0 bit: The output state, 0 is OFF, 1 is ON.
- 1 bit: Over heat protection, 0 is normal, 1 is abnormal.
- 2、3 bit: The output mode, 1 is CV mode, 2 is CC mode,3 is Unreg mode.
- 4_{5} , 5_{5} , 6 bit: The fan speed, 0 is stop, 5 is the maximum fan speed.
- 7 bit: Operation state, 0 is front panel operation mode, 1 is remote control mode.
- 3. The frame format is the same as above

8. Entering the calibration mode (27H)

1 st byte	Start bit(AAH)	
2 nd byte	Address(0~0XFE)	
3 rd byte	Command(27H)	
4 th byte	Calibration protection state	
5 th byte	Calibration password(0X28H)	
6 th byte	Calibration password(0X01H)	
7 th to 25 th byte	System reserve	
26 th byte	Check sum	

Note:

We use a byte to represent calibration protection state, each bit is defined as <u>follows:</u>

from higher bit to lower bit								
7	6	5	4	3	2	1	0	

0 bit: Protection state, 0 is to disable protection, 1 is to enable the protection.

2 nd byte	Address(0~0XFE)
3 rd byte	Command(28H)
4 th byte	Calibration protection state
5 th byte	System reserve
26 th byte	Check sum

10. Calibrating the voltage value (29H)

<u> </u>	
1 st byte	Start bit(AAH)
2 nd byte	Address(0~0XFE)
3 rd byte	Command(29H)
4 th byte	Calibrated voltage points(point 1-3)
5 th to 25 th byte	System reserve
26 th byte	Check sum

Note: To calibrate the 3 points of voltage sequentially.

11. Sending the present output voltage to calibration program (2AH)

1 st byte	Start bit (AAH)
2 nd byte	Address(0~0XFE)
3 rd byte	Command(2AH)
4 th byte	The byte 0 of present voltage value
5 th byte	The byte 1 of present voltage value
6 th byte	The byte 2 of present voltage value
7 th byte	The byte 3 of present voltage value
8 th to 25 th byte	System reserve
26 th byte	Check sum

12. Calibrate the current value (2BH)

1 st byte	Start bit(AAH)
2 nd byte	Address(0-0XFE)
3 rd byte	Command(2BH)
4 th byte	Calibrated current points(point 1-2)
5 th to 25 th byte	System reserve
26 th byte	Check sum

Note: To calibrate the 2 points of the current value sequentially.

1 st byte	Start bit (AAH)
2 nd byte	Address(0~0XFE)
3 rd byte	Command(2CH)
4 th byte	The lower byte of the present current value
5 th byte	The higher byte of the present current value
6 th to 25 th byte	System reserve
26 th byte	Check sum

13. Sending the actual output current to calibration program (2CH)

14. Save the calibration data to EEPROM (2DH)

1 st byte	Start bit(AAH)
2 nd byte	Address (0~0XFE)
3 rd byte	Command(2DH)
4 th to 25 th byte	System reserve
26 th byte	Check sum

15. Setting calibration information (2EH)

1 st byte	Start bit (AAH)
2 nd byte	Address (0~0XFE)
3 rd byte	Command(2EH)
4 th to 23 rd byte	Calibration information(ASIC code)
24 th byte	System reserve
25 th byte	System reserve
26 th byte	Check sum

16. Reading calibration information (2FH)

1 st byte	Start bit (AAH)
2 nd byte	Address (0~0XFE)
3 rd byte	Command (2FH)
4 th to 23 rd byte	Calibration information(ASCII code)
24 th byte	System reserve
25 th byte	System reserve
26 th byte	Check sum

17. Reading product's model, series number and version information $(\rm 31H)$

1 st byte	Start bit (AAH)
2 nd byte	Address (0~0XFE)

3 rd byte	Command (31H)						
4 th to 8 th byte	Product model(ASIC code)						
9 th byte	Lower byte of the software version						
10 th byte	Higher byte of the software version						
11 th to 20 th byte	Serial number(ASCII code)						
21 st to 25 th byte	System reserve						
26 th byte	Check sum						

Note: For example, the serial number is 000045, the product model is IT 6811, and software version is V2.03, then the returned data is as follows:

		0.4	~~	~~~		~ 1				 									N/N/	N/N/	2/2/	N/N/	~~~	
AA	00	31	36	38	31	31	00	03	02	 22	22	22	22	22	22	22	22	22	XX	XX	XX	XX	XX	57

18. Restore the factory default calibration data (32H)

1 st byte	Start bit (AAH)
2 nd byte	Address(0~0XFE)
3 rd byte	Command(32H)
4 th to 25 th byte	System reserve
26 th byte	Check sum

19. Enable the local key (37H)

1 st byte	Start bit (AAH)					
2 nd byte	Address (0-0XFE)					
3 rd byte	Command (37H)					
4 th byte	Enable/disable local key (0 is disable, 1 is enable)					
5 th to 25 th byte	System reserve					
26 th byte	Check sum code					

Note: The local keys on the front panel are not allowed to use when the power supply is in remote mode. If the local key was enabled, user can press the numeric key 7 to change the remote mode to front panel operation mode and all local keys will work.

20. The return information of command operation in power supply (12H)

1 st byte	Start bit (AAH)
2 nd byte	Address (0~0XFE)

3 rd byte	Command(12H)						
4 th byte	Command checkout result						
5 th to 25 th byte	System reserve						
26 th byte	Check sum						

Note: When the power supply receives a frame command, it will check the frame command, if the check sum is correct, then it will return to 90H, if there is any error on setting parameter or over parameter, then it will return to A0H, if the command wasn't executed, then it will return to B0H, if the command isn't effective, then it will return to C0H. Or otherwise, it will return to 80H.