from contextlib import redirect_stderr import numpy as np from matplotlib import pyplot as plt import csv import scipy.constants as sp def main(): print("Code is running.") plot_UI(open_CSV("U(I).csv")) plot_UIs(open_CSV("1,5mA.csv"), '[1,5mA]') plot_UIs(open_CSV("3mA.csv"), '[3mA]') plot_UIs(open_CSV("5mA.csv"), '[5mA]') def open_CSV(filename): with open('/home/dmitrii/Physics Labs/3.5.1/' + filename, newline="") as csvfile: datareader = csv.reader(csvfile, delimiter=",", quotechar="|") data = [] for row in datareader: res = [float(i) for i in row] data.append(res) data = np.array(data) return data def plot_UI(data): plt.scatter(data[:, 1][0:23], data[:, 0][0:23], color="g") plt.scatter(data[:, 1][23:len(data)], data[:, 0] [23:len(data)], color="orange") plt.xticks(np.arange(min(data[:, 1])-0.25, max(data[:, 1])+0.25, 0.25)) plt.yticks(np.arange(min(data[:, 0])-1, max(data[:, 0])+1, 1)) A = np.vstack([data[:, 1][5:12], np.ones(len(data[:, 1][5:12]))]).T alpha = np.dot((np.dot(np.linalg.inv(np.dot(A.T, A)), A.T)), data[:, 0][5:12]) var = str(round(alpha[1]*10**3)) delta = str(abs(round(alpha[0]*10**3))) print("Максимальное дифференциальное сопротивление разряда: {}".format( var) + u" \u00B1 " + "{}, Ом".format(delta)) plt.plot(data[:, 1][5:12], alpha[0]*data[:, 1][5:12]+alpha[1], 'r') plt.ylabel('U, В', fontsize=20) plt.xlabel('I, мкА', fontsize=20) plt.grid() plt.savefig('U(I).png') plt.show() def centre(data): xdiff = [data[n]-data[n-1] for n in range(1, len(data))] return sum(xdiff)/2 def bfl(data): line = np.polyfit(data[:, 0], data[:, 1], 1) return line def plot_UIs(data, num): ax = plt.gca() ax.spines['top'].set_color('none') ax.spines['left'].set_position('zero') ax.spines['right'].set_color('none') ax.spines['bottom'].set_position('zero') plt.scatter(data[:, 0], data[:, 1], color="g", marker="+", s=100) # Make a scatter plot data = np.array(sorted(data, key=lambda x: x[0], reverse=True)) line1 = bfl(data[len(data)-5:len(data)]) line2 = bfl(data[0:5]) aprox = bfl(data[4:len(data)-5]) x1 = (line1[1]-aprox[1])/(aprox[0]-line1[0]) y1 = line1[0]*x1+line1[1] plt.plot(x1, y1, marker='+', color='red') x2 = (line2[1]-aprox[1])/(aprox[0]-line2[0]) y2 = line2[0]*x2+line2[1] plt.plot(x2, y2, marker='+', color='red') plt.plot((data[:, 0][len(data)-5:len(data)]), (data[:, 0] [len(data)-5:len(data)]*line1[0]+line1[1]), color="orange") plt.plot([x1, 0], [y1, line1[1]], linestyle="dashed", color="orange", label='Ток насыщения: ' + str(round(line1[1], 2)) + ' ,А') plt.plot(data[:, 0][0:5], data[:, 0] [0:5]*line2[0]+line2[1], color="orange") plt.plot([x2, 0], [y2, line2[1]], linestyle="dashed", color="orange", label='Ток насыщения: ' + str(round(line2[1], 3)) + ' ,А') S = sp.pi*0.2*10**-4*5.2*10**-4 me = 22*1.66*10**-27 Te = x2/2*11400 ni = line2[1]/0.4/sp.e/S/np.sqrt(2*sp.k*Te/me)/10**14 wp = np.sqrt(4*np.pi*ni*sp.e**2/me)*10**10 rde = np.sqrt(sp.k*Te/4/sp.pi/ni/sp.e**2)*10**-5 rd = np.sqrt(sp.k*300/4/sp.pi/ni/sp.e**2) Nd = 4/3*sp.pi*rd**3*ni print("-----Exp{}-----".format(num)) print("Ток насыщения: {},{}".format( round(line1[1], 3), round(line2[1], 3))) print("Te = {}".format(Te )) print("Ni = {}".format(ni)) print("wp = {}".format(wp)) print("rde = {}".format(rde)) print("rd = {}".format(rd)) print("Nd = {}".format(Nd)) print("---------------") plt.xlabel('U, В', fontsize=20) plt.ylabel('I, мкА', fontsize=20) plt.grid() ax.legend() plt.savefig(num + '.png') plt.show() return plt def plotAll(plot1, plot2, plot3): return True if __name__ == "__main__": main()