Работа 3.5.1

Изучение плазмы газового разряда в неоне

Пунов Дмитрий Викторович

Группа Б03-105

20 сентября 2022

г. Долгопрудный

Аннотация

В работе исследован газовый разряд в неоне. Получены ВАХ двойного и одиночного зонда. Получены следующие параметры плазмы: температура, плазменная частота, радиус Дебая, среднее число ионов в дебаевской сфере.

Список обозначений и сокращений

- ВАХ вольт-амперная характеристика
- ВИП высоковольтный источник питания
- Е электрическое поле
- *I*_{ен} электронный ток насыщения
- ω_p плазменная частота
- *r*_D радиус дебаевской сферы
- N_D среднее число ионов в дебаевской сфере
- $ho_{e/i}$ плотность заряда электронов/ионов
- *U_f* свободный потенциал
- *Т*_е температура электронов

Введение

Плазма по своим характеристикам значительно отличается от обычного газа. Например, такие характерные свойства, как высокая электропроводность и квазинейтральность, требуют введения дополнительных параметров для описания состояния плазмы. Также, ввиду наличия большого числа подвижных заряженных частиц плазма, в противоположность нейтральному газу, сильно взаимодействует с электрическими и магнитными полями. В данной работе рассматриваются основные методы нахождения таких параметров плазмы и их вычисления.

Методика измерений

Измерения проводились с помощью двойного и одиночного зондов. Двойной зонд система из двух одинаковых зондов, расположенных на небольшом расстоянии друг от друга, между которыми создаётся разность потенциалов, меньшая U_f . Одиночный зонд (рис.1) - уединённый проводник с потенциалом, изначально равным потенциалу плазмы в точке, в которую его помещают.

Рисунок 1. Одиночный зонд

В равновесии ионный ток мало меняется, а электронный имеет вид

$$I_e = I_0 \exp\left(-\frac{eU_f}{kT_e}\right) (1)$$

Формулы для разности потенциалов и тока двойного зонда, полученные теоретически:

$$U = \frac{kT_e}{e} \ln\left(\frac{1 - I/I_{i_{\rm H}}}{1 + I/I_{i_{\rm H}}}\right), I = I_{i_{\rm H}} th \frac{eU}{2kT_e}$$
(2)

Реальная зависимость потенциалов и тока двойного зонда описывается формулой:

$$I = I_{iH} th \frac{eU}{2kT_e} + AU.$$
(3)

Данная зависимость изображена на графике 2:

Рисунок 2. График зависимости потенциалов и тока двойного зонда

Из формулы (3) можно найти формулу для T_e :

$$kT_e = \frac{1}{2} \frac{eI_{i\mathrm{H}}}{\frac{dI}{dU}}$$
(4)

Основные формулы, используемые при расчётах

$$\omega_{\rm p} = \sqrt{\frac{4\pi n_{\rm e}e^2}{m_{\rm e}}}$$
$$r_{\rm De} = \sqrt{\frac{k_{\rm b}T_e}{4\pi n_{\rm e}e^2}}$$
$$r_{\rm De} = \sqrt{\frac{k_{\rm b}T_eT_i}{4\pi n_{\rm e}e^2(T_e + T_i)}}$$

Описание установки

Стеклянная газоразрядная трубка имеет холодный (не накаливаемый) полый катод, три анода и гетерный узел - стеклянный баллон, на внутреннюю поверхность которого напылена газопоглощающая плёнка. Трубка наполнена изотопом неона ²2*Ne* при давлении 2 мм рт. ст. Катод и один из анодом (I и II) с помощью переключателя Π_1 подключается через балластный резистор $R_6 (\approx 450$ кОм) к регулируемому ВИП с выкодным напряжением до 5 кВ.

При подключении к ВИП анода-II разряд возникает в пространстве между катодом и анодом-II, где находятся двойной зонд, используемый для диагностики плазмы положительного столба. Зонды изготовлены из молибденовой проволоки диаметром d = 0.2 мм и имеют длину 1 =5.2 мм. Они подключены к источнику питания GPS через

потенциометр R. Переключатель Π_2 позволяет изменять полярность напряжения на зондах. Величина напряжения на зондах изменяется с помощью дискретного переключателя V выходного напряжения источника питания и потенциометра R, а измеряется цифровым вольтметром V_2 . Для измерения зондового тока используется мультиметр A_2 .

Анод-III в работе не используется.

Рисунок 3. Схема лабораторной установки

Результаты измерений и обработка данных

С помощью вольтметра V_1 и амперметра A_1 измерили ВАХ разряда $I_p(U_p)$. Ток разряда изменяли в диапазоне от 0,5 мА до 5мА. Результаты измерений изображены на графике 4.

Рисунок 4. ВАХ разряда $I_p(U_p)$.

С помощью вольтметра V_2 и амперметра A_2 сняли ВАХ двойного зонда $I_2 = f(U_2)$ при фиксированном токе разряда I_p в трубке в диапазоне -25÷25 В. Измерения провели для $I_p = 5$ мА, $I_p = 3$ мА, $I_p = 1,5$ мА. Результаты отображены в таблице 2. (Приложения) Отцентрированные графики представлены в Приложении ($I_0 = \frac{1}{2} \sum I$):

Определили концентрации ионов и электронов, считая их равными. Рассчитали плазменную частоту ω_p , радиус Дебая r_D , а также среднее число ионов в дебаевской сфере N_D .

<i>I</i> , мА	<i>Т_е, эВ</i>	n_i , 10^{13} , м $^{-3}$	<i>ω</i> , 10 ⁵ рад/с	<i>r_{De}</i> , м ⁻⁵	<i>r</i> _D ,м ^{−5}	$\langle N_D \rangle$,10 ⁶	$\alpha, 10^{-7}$
5,00	5,01	5,9	4,3	1,9	1,4	2,3	93
3,00	3,24	3,3	3,2	2,7	1,9	3,1	53
1,50	5,07	1,4	2,1	3,8	2,9	4,7	23

Рисунок 5. Зависимость температуры и концентрации электронов от тока разряда в плазме неона

Обсуждение результатов

- 1) Из сравнения ВАХ разряда (Приложение рис.4) и графика ВАХ газового разряда очевидно, что рассматривался участок, соответствующий поднормальному тлеющему разряду
- 2) Из оценки числа электронов в дебаевской сфере, можно сделать вывод что плазму можно называть идеальной и квазинейтральной

Вывод

В ходе работы подтверждена теоретическая зависимость $I = I_{iH} th \frac{eU}{2kT_c} + AU..$

Полученные результаты совпадают с табличными для плазмы газового разряда

Список литературы

- 1) Никулин. М.Г., Попов П.В., Нозик А.А. Лабораторный практикум по общей физике : учеб. пособие в трёх томах. Т. 2. Электричество и магнетизм. 2-е изд. М.: МФТИ, 2019. 370 с.
- 2) Франк-Каменецкий Д.А. Лекции по физике плазмы. 3-е изд. Долгопрудный: Издательский Дом "Интеллект", 2008. 280 с.
- 3) Сивухин Д.В. Электричество. 4-е изд. М.: ФИЗМАТЛИТ, 2004. 656 с.

Приложения

Рисунок 1. ВАХ двойного зонда (1,5 мА)

Рисунок 2. BAX двойного зонда (3 мА)

Рисунок 3. ВАХ двойного зонда (5 мА)

Рисунок 4. ВАХ разряда при давлении 1 мм. рт. ст.(А, А': случайные импульсы, вызванные ионизирующим излучением от естественной радиоактивности и космического излучения; А—В: ток насыщения от естественной ионизации; В—С: темновой лавинный разряд Таунсенда; С—D: самостоятельный разряд Таунсенда; Е, Е': область неустойчивости, коронный разряд; Е—F: субнормальный тлеющий разряд; G: граница нормального тлеющего разряда; Н: аномальный тлеющий разряд; I: нестабильная область,

переход тлеющего разряда в дуговой разряд; J: дуговой разряд с отрицательным дифференциальным сопротивлением; К: развитая электрическая дуга.)

<i>V</i> ₁ , B	I_1, mA	<i>V</i> ₁ , B	I ₁ , mA
34,85	0,5	24,37	4,56
34,3	0,8	24,61	4,32
33,76	1	24,75	4,2
33,33	1,16	24,99	4,04
32,96	1,4	25,45	3,8
32,39	1,6	26,07	3,56
30,24	1,8	26,57	3,4
29,02	2	27,09	2,34
28,19	2,2	27,26	3
27,59	2,4	26,43	2,8
26,69	2,6	26,44	2,6
26,25	2,8	27,49	2,4
27,08	3	28,31	2,2
27,06	3,2	29,04	1,96
26,51	3,4	30,33	1,8
25,82	3,6	32,62	1,56
25,33	3,8	32,88	1,4
24,91	4,04	33,32	1,2
24,68	4,24	33,74	1,04
24,48	4,4	34,22	0,8
24,29	4,64	34,59	0,6

Таблица 1. ВАХ одиночного зонда

I _p , mA	<i>V</i> ₂ , B	I ₂ , mA	I_p, mA	<i>V</i> ₂ , B	I_2, mA	I _p , mA	<i>V</i> ₂ , B	I ₂ , mA
5	24,98	105,85	3	24,98	56,46	1,5	24,98	27,17
	21,94	103,84		21,78	54,35		22,20	26,39
	19,09	101,27		19,03	53,45		19,30	25,41
	16,00	97,68		16,18	58,73		16,15	24,39
	13,10	91,76		13,00	49,26		13,22	23,29
	9,74	80,93		10,41	45,80		10,24	21,32
	8,10	73,68		7,77	39,75		7,97	18,88
	6,12	62,93		5,96	33,40		6,22	15,96
	4,10	49,76		4,39	26,79		4,39	12,55
	2,10	32,23		1,92	14,53		2,14	6,32
	0,50	18,01		0,55	6,48		0,69	2,60
	-25,00	-113,54		-25,10	-60,56		-25,10	-29,19
	-22,05	-110,88		-21,87	-58,70		-22,12	-28,19
	-19,31	-108,29		-19,14	-57,05		-19,07	-27,20
	-16,39	-103,44		-16,40	-55,78		-16,13	-26,18
	-12,91	-96,33		-13,20	-52,70		-13,12	-24,34
	-10,23	-87,22		-10,12	-47,06		-10,42	-22,97

Таблица 2. ВАХ двойного зонда