МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Лабораторная работа 3.5.1 «Изучение плазмы газового разряда в неоне»

Студент группы Б02-109

Назарчук Анна

Долгопрудный, 2022

1. Аннотация

В работе исследована плазма газового разряда в неоне с помощью двойного зонда. Экспериментально получена вольт-амперная характеристика разряда в режиме поднормального тлеющего разряда. Расчитаны зондовые характеристики, измерены основные параметры плазмы.

2. Введение

Как известно, вещество может находиться в трёх агрегатных состояниях — твёрдом, жидком и газообразном, причём эти состояния последовательно сменяются по мере возрастания температуры. Если и дальше нагревать газ, то сначала молекулы диссоциируют на атомы, а затем и атомы распадаются на электроны и ионы, так что газ становится ионизованным, представляя собой смесь из свободных электронов и ионов, а также нейтральных частиц. Такое состояние газа нельзя описывать как обычный газ с некоторыми частицами, требуются дополнительные параметры, описывающие движение такого газа (плазмы). Определение таких параметров, как тип разряда и других основных характеристик, и является целью данной работы.

3. Методика измерений

Для определения основных характеристик плазмы произведены измерения с помощью двойного зонда - системы, состоящей из двух одинаковых зондов на небольшом растоянии друг от друга, между которыми создается небольшая (по сравнению с потенциалом, до которого заряжается зонд, помещенный в плазму) разность потенциалов U. Теоретически получена зависимость тока от напряжения между зондами: (она также представлена на графике 1).[1]

$$I = I_{i\mathrm{H}} th \frac{eU}{2k_{\mathrm{B}}T_{e}} \tag{1}$$

Рис. 1: Качественный вид экспериментальной вольт-амперной характеристики двойного зонда [1]

При рассмотрении этой формулы вблизи U = 0:

$$k_{\rm B}T_e = \frac{1}{2} \frac{eI_{i\rm H}}{\frac{dI}{dU}|_{U=0}}$$
(2)

Для определения температуры электронов в плазме из пересечения асимптот с осью U = 0 найдена I_{in} и вычислен наклон графика в начале координат. По этим известным параметрам определена концентрацию заряженных частиц, используя полуэмперическую формулу Д. Бома: [1]

$$I_{i\rm H} \approx 0.4 n_i S \sqrt{\frac{2k_{\rm B}T_e}{m_i}} \tag{3}$$

Основными характеристиками плазмы являются плазменная частота колебаний ω_p (определяет временной масштаб движения плазмы), дебаевский радиус r_{De} (определяет пространственный масштаб явления в плазме), поляризационная длина r_D (определяет масштаб, на котором можно считать плазму квазинейтральной), среднее число ионов в дебаевской сфере N_D (при больших значениях плазма считается идеальной). Теоретические формулы для вычисление этих величин приведены в таблице 1.[1]

Таблица 1: Теоретические выражения для основных характеристик плазмы

Величина	Теоретическое выражение		
ω_p	$\sqrt{rac{4\pi n_e e^2}{m_e}}$		
r_{De}	$\sqrt{rac{k_{ m B}T_e}{4\pi n_e e^2}}$		
r_D	$\sqrt{\frac{k_{\rm B}}{4\pi n_e e^2} \frac{T_e T_i}{T_e + T_i}}$		
N _D	$\frac{4}{3}\pi n_i r_D^3$		

4. Установка

Схема экспериментальной установки приведена на рисунке 2. Трубка наполнена изотопом неона ^{22}Ne при давлении 2 мм рт. ст. При подключении к высоковольтному источнику питания анода-I между ним и катодом возникает газовый разряд. Ток разряда измеряется миллиамперметром A_1 , а падение напряжения на разрядной трубке — вольтметром V_1 . При подключении к высоковольтному источнику питания анода-II разряд возникает в пространстве между катодом и анодом-II, где находится двойной зонд, используемый для диагностики плазмы положительного столба.

5. Измерения и обработка данных

5.1. Вольт-амперная характеристика разряда

Для определения типа разряда с помощью вольтметра V_1 и амперметра A_1 измерена вольтамперная характеристика разряда $I_p(U_p)$ (рис. 3)

По наклону кривой определено максимальное $R_{\text{ди}\phi} = \frac{dU}{dI} = -68 \pm 11$ кОм. Полученный участок вольт-амперной характеристики соответствует поднормальному тлеющему разряду.

Рис. 2: Схема экспериментальной установки для исследования газового разряда при давлениях ~2 Торр. R_6 - балластный резистор (~ 500 кОм), Π_1 - переключатель, R_1, R_2 высокоомный делитель напряжения, R - потенциометр, V_1, V_2 - вольтметры, A_1, A_2 - амперметры, ВИП - высоковольтный источник питания

Рис. 3: Вольт-амперная характеристика разряда в неоне при давлени
и $P\sim2$ торр, температуре и
онов $T_i\approx 300~{\rm K}$

5.2. Зондовые характеристики

Для определения характеристик плазмы в неоне при фиксированном токе разряда измерена вольт-амперная характеристика двойного зонда. (рис. 4). Для каждой зондовой характеристики определен ионный ток и наклон характеристики в начале координат по графику. Из полученных результатов рассчитаны T_e , n_i , ω_p , r_{De} , r_D , N_D , α - степень ионизации плазмы (по формулам из таблицы 1). Результаты приведены в таблице 2, также построены графики зависимости электронной температуры и концентрации электронов от тока разряда (рис. 5).

Рис. 4: Вольт-амперная характеристика двойного зонда при токах $\sim 50\mu$ A, давлени
и $P\sim 2$ торр, температуре и
онов $T_i\approx 300~{\rm K}$

Таблица 2: Характеристики плазмы в неоне при давлении $P \sim 2$ торр, температуре и
онов $T_i \approx 300$ К для разных токов разряда I_p

			- P		
	I_p , мА	1.5	3	3.4	
	T_e , эВ	3.08 ± 0.25	4.23 ± 0.10	3.7 ± 0.4	
	$n_i, 10^{10} \ 1/{ m cm}^3$	2.12 ± 0.09	4.55 ± 0.06	4.8 ± 0.3	
	$\omega_p, 10^9 \text{ рад/с}$	8.21 ± 0.17	12.03 ± 0.08	12.4 ± 0.4	
	$r_{De}, 10^{-3}$ см	9.0 ± 0.8	7.17 ± 0.20	6.5 ± 0.7	
	$r_D, 10^{-3}$ см	0.82 ± 0.03	0.561 ± 0.075	0.54 ± 0.03	
	N_D	49 ± 6	34 ± 1	33 ± 6	
	$\alpha, 10^{-5}$	3.9 ± 0.4	11.6 ± 0.3	10.7 ± 1.2	

6. Обсуждение результатов

1. При сравнении вольт-амперной характеристики разряда (рис. 3) и графика вольтамперной характеристики газового разряда из [1] (рис. 6) видно, что рассматривался участок ГД, соответствующий поднормальному тлеющему разряду.

2. По определению поляризационной длины r_{De} плазму можно считать квазинейтральной, так как именно электронная дебаевская длина определяет масштаб, на котором нарушается квазинейтральность из-за тепловых флуктуаций электронов относительно ионов, а $r_{De} \sim 10^{-2}$ см, что много меньше размеров области.

Рис. 5: Зависимость электронной температуры и концентрации электронов от тока разряда в плазме неона при давлении $P\sim2$ торр, температуре и
онов $T_i\approx 300~{\rm K}$

Рис. 6: Качественный вид вольт-амперной характеристики разряда в неоне при давлении $P \sim 1$ торр (из [1])

3. Оценив число ионов в дебаевской сфере $N_D \sim 40$, видно, что число частиц много больше 1, что позволяет называть плазму идеальной.

4. Определить зависимость электронной температуры от тока разряда с помощью полученных данных (рис. 5) невозможно из-за малого числа точек и достаточной погрешности результатов. Однако можно качественно оценить зависимость концентрации электронов от тока разряда: график напоминает линейную или степенную зависимость, что достаточно ожидаемо, при увеличении тока разряда увеличивается и число электронов в газе.

7. Выводы

Из вольт-амперной характеристики разряда получено, что исследовался тлеющий газовый разряд. Экспериментальная зондовая характеристика схожа с теоретической зависимостью: $I = I_{in} th \frac{eU}{2k_{\rm B}T_e}$, количество ионов в дебаевской сфере $N_D \sim 40$ показывает идеальность плазмы. Остальные характеристики плазмы получились схожими с табличными значениями [1], что показало справедливость метода измерений. Однако не удалось оценить зависимость температуры электронов от тока разряда из-за неточных измерений и малого их числа.

Список используемой литературы

[1] Никулин М.Г., Попов П.В., Нозик А.А. и др. Лабораторный практикум по общей физике : учеб. пособие. В трех томах. Т. 2. Электричество и магнетизм