# -*- coding: utf-8 -*- """ Created on Mon Sep 12 12:24:24 2022 @author: anna """ # -*- coding: utf-8 -*- import numpy as np import matplotlib.pyplot as plt import csv from scipy.optimize import curve_fit def read_csv(file_name): with open(file_name) as file: reader = list(csv.reader(file, delimiter=';', quotechar=',', quoting=csv.QUOTE_MINIMAL)) return reader def make_latex_table(data): table = [] table.append("\\begin{table}".replace('//', '\\')) table.append("\label{}".replace('/', '\\')) table.append('\caption{}'.replace('/', '\\')) leng = len(data[0]) stroka = 'c'.join(['|' for _ in range(leng+1)]) table.append('\\begin{tabular}{'.replace('//', '\\')+stroka+'}') table.append('\hline') for i in range(len(data)): table.append(' & '.join(data[i]) + ' \\\\') table.append('\hline') table.append("\end{tabular}".replace('/', '\\')) table.append("\end{table}".replace('/', '\\')) return table def make_point_grafic(x, y, xlabel, ylabel, caption, xerr, yerr, subplot=None, color=None, center=None, s=15): if not subplot: subplot = plt if type(yerr) == float or type(yerr) == int: yerr = [yerr for _ in y] if type(xerr) == float or type(xerr) == int: xerr = [xerr for _ in x] if xerr[1] != 0 or yerr[1] != 0: subplot.errorbar(x, y, yerr=yerr, xerr=xerr, linewidth=4, linestyle='', label=caption, color=color, ecolor=color, elinewidth=1, capsize=3.4, capthick=1.4) else: subplot.scatter(x, y, linewidth=0.005, label=caption, color=color, edgecolor='black', s=s) # ax = plt.subplots() # ax.grid()) if not center: plt.xlabel(xlabel) plt.ylabel(ylabel) else: ax = plt.gca() ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) ax.spines['bottom'].set_position('zero') ax.spines['left'].set_position('zero') ax.set_xlabel(ylabel, labelpad=-180, fontsize=14) # + ax.set_ylabel(xlabel, labelpad=-260, rotation=0, fontsize=14) def make_line_grafic(xmin, xmax, xerr, yerr, xlabel, ylabel, k, b, caption, subplot=None, color=None, linestyle='-'): if not subplot: subplot = plt x = np.arange(xmin, xmax, (xmax-xmin)/10000) subplot.plot(x, k*x+b, label=caption, color=color, linewidth=2.4, linestyle=linestyle) def make_graffic(x, y, xlabel, ylabel, caption_point, xerr, yerr, k=None, b=None, filename=None, color=None, koef=[0.9, 1.1]): if not color: color = ['limegreen', 'indigo'] make_point_grafic(x, y, xlabel=xlabel, ylabel=ylabel, caption=caption_point, xerr=xerr, yerr=yerr, subplot=plt, color=color[0]) if k and b: make_line_grafic(xmin=min(x)-1, xmax=max(x)+1, xerr=xerr, yerr=yerr, xlabel='', ylabel='', k=k, b=b, caption='Theoretical dependence', subplot=plt, color='red') if type(yerr) == float or type(yerr) == int: yerr = [yerr for _ in y] k, b, sigma = approx(x, y, b, yerr) sigma[0] = abs(k*((sigma[0]/k)**2+(np.mean(yerr)/np.mean(y))**2 + (np.mean(xerr)/np.mean(x))**2)**0.5) if (b != 0): sigma[1] = abs(b*((sigma[1]/b)**2+(np.mean(yerr)/np.mean(y))**2 + (np.mean(xerr)/np.mean(x))**2)**0.5) else: sigma[1] = 0 make_line_grafic(xmin=min(x)*koef[0], xmax=max(x)*koef[1], xerr=xerr, yerr=yerr, xlabel='', ylabel='', k=k, b=b, caption=None, subplot=plt, color=color[1]) plt.legend() return k, b, sigma def approx(x, y, b, sigma_y, f=None): if sigma_y[0] != 0: sigma_y = [1/i**2 for i in sigma_y] else: sigma_y = np.array([1 for _ in y]) if f is None: if b == 0: def f(x, k): return k*x k, sigma = curve_fit(f, xdata=x, ydata=y, sigma=sigma_y) sigma = np.sqrt(np.diag(sigma)) return k, b, [sigma, 0] else: def f(x, k, b): return x*k + b k, sigma = curve_fit(f, xdata=x, ydata=y, sigma=sigma_y) sigma_b = np.sqrt(sigma[1][1]) b = k[1] k = k[0] sigma = np.sqrt(sigma[0][0]) return k, b, [sigma, sigma_b] else: k, sigma = curve_fit(f, xdata=x, ydata=y, sigma=sigma_y) sigma = np.sqrt(np.diag(sigma)) b = k[1] k = k[0] return k, b, sigma def find_delivation(data): data = np.array(data).astype(np.float) s = sum(data)/len(data) su = 0 for i in data: su += (i-s)**2 return (su/(len(data)-1))**0.5 def make_dic(filename): data = np.array(read_csv(filename)) data = np.transpose(data) dic = {} for i in range(len(data)): dic[data[i][0]] = np.array(data[i][1:]).astype(np.float) data = dic return data def make_fun(A0, T): def f(t, k, b): return A0/(1+A0*b*t)-k*0*A0*t/T return f def make_fun_grafic(xmin, xmax, xerr, yerr, xlabel, ylabel, f, k, b, caption, subplot=None, color=None): if not subplot: subplot = plt x = np.arange(xmin, xmax, (xmax-xmin)/10000) subplot.plot(x, f(x, k, b), label=caption, color=color) def make_all(): plt.figure(dpi=500, figsize=(8, 5)) vac_discharge() plt.savefig('U(I)_discharge') plt.show() plt.figure(dpi=500, figsize=(8, 5)) vac_probe() def vac_discharge(): data = make_dic('V(I)_discharge.csv') data['I_1'] *= 6/150 data['U_1'] *= 10 x = [] y = [] for i in range(len(data['U_1'])): if data['I_1'][i] <= 1.8: y.append(data['U_1'][i]) x.append(data['I_1'][i]) x = np.array(x) y = np.array(y) k, b, sigma = make_graffic(y=y, x=x, xlabel='I, mA', ylabel='U, V', caption_point='', xerr=0.003*x, yerr=0.002*y) make_point_grafic(y=data['U_1'], x=data['I_1'], ylabel='U, V', xlabel='I, mA', caption='', xerr=0.003*data['I_1'], yerr=0.002*data['U_1']) print('R_dif=', k*10**3, '+-', sigma[0]*10**3) def vac_probe(): big_data = {'I_en': [], 'I_en_sigma': [], 'I_in': [], 'k': [], 'I_in_sigma': [], 'k_sigma': []} I_p = [1.5, 3, 3.4] for i in I_p: name = 'Probe_'+str(i)+'.csv' num = int(i+0.6)-2 data = make_dic(name) cap = '$I_p$ = ' + str(i)+' mA' x = data['U'] y = data['I'] xlabel = 'U, V' ylabel = 'I, $\mu$A' color = colors[num] x_lin_big = [] x_lin_sm = [] y_lin_big = [] y_lin_sm = [] x_lin_ave = [] y_lin_ave = [] for j in range(len(data['U'])): if data['U'][j] >= 12.5: x_lin_big.append(data['U'][j]) y_lin_big.append(data['I'][j]) elif data['U'][j] <= -12.5: x_lin_sm.append(data['U'][j]) y_lin_sm.append(data['I'][j]) elif data['U'][j] <= 6 and data['U'][j] >= -6: x_lin_ave.append(data['U'][j]) y_lin_ave.append(data['I'][j]) xerr = 0.003 yerr = 0.002 k, b, sigma = make_graffic(x_lin_big, y_lin_big, xlabel=xlabel, ylabel=ylabel, caption_point='', xerr=0, yerr=0, color=color) big_data['I_en'].append(b*10**(-6)*3*10**9) big_data['I_en_sigma'].append(sigma[1]*10**(-6)*3*10**9) make_line_grafic(0, xmax=max(x_lin_big), xerr=0, yerr=0, xlabel=xlabel, ylabel=ylabel, k=k, b=b, caption='', linestyle=':', color=color[1]) plt.scatter(0, b, color=color[1], marker=0, s=15, linewidths=5) k, b, sigma = make_graffic(x_lin_sm, y_lin_sm, xlabel=xlabel, ylabel=ylabel, caption_point='', xerr=0, yerr=0, color=color, koef=[1.1, 0.9]) big_data['I_in'].append(-b*10**(-6)*3*10**9) big_data['I_in_sigma'].append(sigma[1]*10**(-6)*3*10**9) make_line_grafic(xmax=0, xmin=min(x_lin_sm), xerr=0, yerr=0, xlabel=xlabel, ylabel=ylabel, k=k, b=b, caption='', linestyle=':', color=color[1]) make_point_grafic(x, y, xlabel, ylabel, caption=cap, xerr=xerr*x, yerr=yerr*y, center=True, color=color[0]) plt.scatter(0, b, color=color[1], marker=0, s=15, linewidths=5) k, b, sigma = approx(x_lin_ave, y_lin_ave, b=2, sigma_y=[0]) big_data['k'].append(k*10**(-6)*3*10**9*3*10**2) big_data['k_sigma'].append(sigma[0]*10**(-6)*3*10**9*3*10**2) plt.legend() plt.savefig('I(U)_probe') plt.show() for i in big_data.keys(): big_data[i] = np.array(big_data[i]) k_b = 1.38*10**(-16) e = 4.8 * 10**(-10) T_e = 1/2*big_data['I_in']/big_data['k']*e/k_b # ЭВ T_e_sigma = T_e*((big_data['I_in_sigma']/big_data['I_in'])**2+ (big_data['k_sigma']/big_data['k'])**2)**0.5 print('T_e = ', *T_e, 'К') print('T_e_sigma = ', *T_e_sigma, 'К') print('T_e = ', *T_e/11606, 'эВ') print('T_e_sigma = ', *T_e_sigma/11606, 'эВ') S = np.pi * 0.2 * 5.2 * 10 ** (-2) m_i = 22 * 1.66 * 10 ** (-24) m_e = 9.1 * 10 ** (-28) n_i = 2.5*big_data['I_in']/e/S*(m_i/2/T_e/k_b)**0.5 n_i_sigma = n_i*((big_data['I_in_sigma']/big_data['I_in'])**2+ 1/4*(T_e_sigma/T_e)**2)**0.5 print('n_i = ', *n_i/10**(10), '10^10') print('n_i_sigma = ', *n_i_sigma/10**(10), '10^10') w_p = (4*np.pi*n_i*e**2/m_e)**0.5 w_p_sigma = w_p * n_i_sigma/n_i/2 print('w_p =', *w_p/10**9, '10^9 рад/с') print('w_p_sigma =', *w_p_sigma/10**9, '10^9 рад/с') r_De = (k_b*T_e/4/np.pi/n_i/e**2)**0.5 r_De_sigma = r_De * ((T_e_sigma/T_e)**2 + (n_i_sigma/n_i)**2)**0.5 print('r_De =', *r_De*10**3, '10^-3 см') print('r_De_sigma =', *r_De_sigma*10**3, '10^-3 см') T_i = 300 r_D = (k_b*T_i/4/np.pi/n_i/e**2)**0.5 r_D_sigma = r_D * n_i_sigma/n_i print('r_D =', *r_D*10**3, '10^-3 см') print('r_D_sigma =', *r_D_sigma*10**3, '10^-3 см') N_D = 4/3*np.pi*n_i*r_D**3 N_D_sigma = N_D * (9*(r_D_sigma/r_D)**2 + (n_i_sigma/n_i)**2)**0.5 print('N_D = ', *N_D) print('N_D_sigma = ', *N_D_sigma) alpha = n_i * k_b * T_e / (2*133*10) alpha_sigma = alpha * ((T_e_sigma/T_e)**2 + (n_i_sigma/n_i)**2)**0.5 print('alpha = ', *alpha*10**5, '10^-5') print('alpha_sigma = ', *alpha_sigma*10**5, '10^-5') plt.figure(dpi=500, figsize=(8, 5)) ax = plt.gca() ax.set_xlabel("radius [m]", fontsize=16) ax.set_ylabel(r"surface area ($m^2$)", fontsize=16, color="blue") for label in ax.get_yticklabels(): label.set_color("blue") I_p = np.array(I_p) make_point_grafic(I_p, T_e/10**4, ylabel='$T_e, 10^4 \cdot K$', xlabel='$I_p$, mA', caption='', xerr=I_p*xerr, yerr=T_e_sigma/10**4, color='blue', s=60) ax2 = ax.twinx() ax2.set_ylabel(r"volume ($m^3$)", fontsize=16, color="red") for label in ax2.get_yticklabels(): label.set_color("red") make_point_grafic(I_p, n_i/10**10, ylabel='$n_e, 10^{10} \cdot см^{-3}$', xlabel='$I_p$, mA', caption='', xerr=I_p*xerr, yerr=n_i_sigma/10**10, color='red', s=30) plt.savefig('T,n(I_p)') plt.show() colors = [['green', 'mediumpurple'], ['orange', 'sandybrown'], ['maroon', 'rosybrown'], ['darkblue', 'gold'], ['crimson', 'greenyellow'], ['indigo', 'lightgreen']] make_all()