Министерство науки и высшего образования Российской Федерации МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ

ОТЧЁТ О ВЫПОЛНЕНИИ ЛАБОРАТОРНОЙ РАБОТЫ

Спектральный анализ электрических сигналов

Работу выполнил, студент ФЭФМ группы Б04-107 _____ Луговцов Г.С.

Долгопрудный 2022

Реферат

В работе изучается спектральный состав периодических электрических сигналов различной формы: цугов, прямоугольных импульсов и модулированных по амплитуде сигналов. Спектры этих сигналов наблюдаются на цифровом анализаторе спектра и сравниваются с рассчитанными теоретическими значениями. В результате теоретические выкладки были подтверждены разложением в спектр различных синалов.

Содержание

Введение			4
1	Метод	ика	5
	1.1	Разложение в спектр периодической последовательности	
		прямоугольных импульсов	5
	1.2	Разложение в спектр периодической последовательности	
		цугов	5
	1.3	Разложение в спектр амплитудно-модулированных коле-	
		баний	6
2	Обсуждение результатов		
	2.1	Исследование спектра периодических последовательно-	
		стей прямоугольных импульсов	8
	2.2	Исследование спектра периодической последовательно-	
		сти цугов	9
	2.3	Исследование спектра амплитудно модулированного сиг-	
		нала	11
Зағ	ключен	ие	14

Введение

В последнее время повсеместное распространение получила цифровая обработка сигналов. Спектральный состав оцифрованного сигнала может быть найден с помощью компьютера и численных методов. Этими способами мы и будем пользоваться в работе для изучения различного рода сигналов.

1 Методика

1.1 Разложение в спектр периодической последовательности прямоугольных импульсов

Рисунок 1.1 — Периодическая последовательность импульсов (слева) и разложение этой последовательности в спектр (справа), пунктиром обозначена огибающая функция.

Напомним, что частота собственных колебаний контура может быть вычислена по формуле $\Omega_1 = \frac{2\pi}{T}$, где T — период повторения импульсов.

Коэффициенты при косинусных составляющих будут равны

$$a_n = \frac{2}{T} \int_{-\tau/2}^{\tau/2} V_0 \cos(n\Omega_1 t) \, dt = 2V_0 \frac{\tau}{T} \frac{\sin(n\Omega_1 \tau/2)}{n\Omega_1 \tau/2} \sim \frac{\sin x}{x}.$$
 (1.1)

Здесь V_0 - амплитуда сигнала. Поскольку наша функция четная, то $b_n=0.$

Пусть *T* кратно τ . Тогда введем параметр под назваением ширина спектра, равный $\Delta \omega$ — расстояние от главного максимума до первого нуля огибающей, возникающего, как нетрудно убедиться при $n = \frac{2\pi}{\tau \Omega_1}$. При этом

$$\Delta \omega \tau \simeq 2\pi \Rightarrow \Delta \nu \Delta t \simeq 1. \tag{1.2}$$

1.2 Разложение в спектр периодической последовательности цугов

Возьмём цуги колебания $V_0 \cos(\omega_0 t)$ с длительностью цуга τ и периодом повторений T. Функция f(t) снова является четной относительно

Рисунок 1.2 — Периодическая последовательность цугов (слева) и спектр этой последовательности (справа), пунктиром обозначена огибающая функция.

t = 0. Коэффициент при n-ой гармонике равен

$$a_{n} = \frac{2}{T} \int_{-\tau/2}^{\tau/2} V_{0} \cos(\omega_{0}t) \cdot \cos(n\Omega_{1}t) dt = V_{0} \frac{\tau}{T} \left(\frac{\sin\left[(\omega_{0} - n\Omega_{1})\frac{\tau}{2}\right]}{(\omega_{0} - n\Omega_{1})\frac{\tau}{2}} + \frac{\sin\left[(\omega_{0} + n\Omega_{1})\frac{\tau}{2}\right]}{(\omega_{0} + n\Omega_{1})\frac{\tau}{2}} \right).$$
(1.3)

Пусть T кратно τ . Тогда спектры последовательности прямоугильных сигналов и цугов аналогичны, но максимумы сдвинуты на ω_0 .

1.3 Разложение в спектр амплитудно-модулированных колебаний

Рисунок 1.3 — Амплитудно-модулированные колебания (слева) и спектр этих колебаний (справа).

Рассмотрим гармонические колебания высокой частоты ω_0 , амплитуда которых медленно меняется по гармоническому закону с частотой $\Omega \ll \omega_0.$

$$f(t) = A_0 \left[1 + m \cos \Omega t\right] \cos \omega_0 t. \tag{1.4}$$

Коэффициент m будем называть глубиной модуляции. При m < 1 амплитуда меняется от минимальной $A_{min} = A_0(1-m)$ до максимальной $A_{max} = A_0(1+m)$. Глубина модуляции может быть представлена в виде

$$m = \frac{A_{max} - A_{min}}{A_{max} + A_{min}}.$$
(1.5)

Простым тригонометрическим преобразованием можно найти спектр колебаний

$$f(t) = A_0 \cos \omega_0 t + \frac{A_0 m}{2} \cos (\omega_0 + \Omega) t + \frac{A_0 m}{2} \cos (\omega_0 - \Omega) t.$$
 (1.6)

2 Обсуждение результатов

2.1 Исследование спектра периодических последовательностей прямоугольных импульсов

Устанавливаем прямоугольные колебания с
 $\nu_{\rm повт}=1~{\rm k}\Gamma$ ц (период $T=1~{\rm mc})$ и длительностью импульс
а $\tau=100~{\rm mkc}.$

Получаем на экране спектр сигнала и, изменяя либо τ , либо $\nu_{\text{повт}}$, наблюдаем, как изменяется спектр.

Рисунок 2.1 — Разложение в спектр периодической последовательности прямоугольных импульсов с параметрами $\nu_{\text{повт}} = 1$ кГц, $\tau = 100$ мкс

Рисунок 2.2 — Разложение в спектр периодической последовательности прямоугольных импульсов с параметрами $\nu_{\text{повт}} = 1 \text{ к}\Gamma$ ц, $\tau = 200 \text{ мкс}$

Из данных видно, что, при увеличении τ , уменьшается $\Delta \nu$, а при увеличении $\nu_{\text{повт}}$, увеличивается расстояние между пиками.

Измерим зависимость $\Delta \nu$ от τ .

Из графика (рис. 2.4) $\Delta \nu \cdot \tau = 1.004 \pm 0.014$, что подтверждает соотношение неопределенностей.

Рисунок 2.3 — Разложение в спектр периодической последовательности прямоугольных импульсов с параметрами $\nu_{\text{повт}} = 2 \text{ к}\Gamma$ ц, $\tau = 100 \text{ мкс}$

Рисунок 2.4 — Зависимость 1/ $\Delta
u_0(au)$

2.2 Исследование спектра периодической последовательности цугов

Посмотрим на последовательность цугов с характерными параметрами $\nu_0 = 50 \text{ к}\Gamma \text{ц}$, частота повторения импульсов $f_{\text{повт}} = 1 \text{ к}\Gamma \text{ц}$ и исследуем спектр этого сигнала для разных длительностей импульса (рис. 2.5 и рис. 2.6).

Из данных видно, что при изменении τ значение $\Delta \omega$ обратнопропорционально меняется.

Рассмотрим поведение спектрограммы при фиксировнном значении τ и меняющемся значении ν_0 (рис. 2.7, рис. 2.8 и рис. 2.9).

Рисунок 2.5 — Разложение в спектр периодической последовательности цугов, $\tau = 100$ мкс

Рисунок 2.6 — Разложение в спектр периодической последовательности цугов, $\tau=200~{\rm mkc}$

Из данных видно, что при изменении ν_0 картина смещается без изменения расстояния между спектральными компонентами. Исследуем, как это расстояние меняется при изменении $f_{\text{повт}}$ (таб. ??).

Погрешность результатов определяется погрешностью генератора – 0.5 Гц.

$$\frac{f_{\text{повт}}}{\nu, \kappa \Gamma \mathrm{II}} = 1 \pm 0.1\%$$

что согласуется с теорией.

Рисунок 2.7 — Разложение в спектр периодической последовательности
цугов, $\nu_0=10~{\rm к}\Gamma{\rm ц}$

Рисунок 2.8 — Разложение в спектр периодической последовательности
цугов, $\nu_0=25~{\rm к}\Gamma{\rm ц}$

2.3 Исследование спектра амплитудно модулированного сигнала

Рассмотрим амплитудно промодулированную синусоиду с параметрами $\nu_0 = 25 \kappa \Gamma$ ц, $\nu_{\text{мод}} = 1 \kappa \Gamma$ ц (рис. 2.10).

Посмотрим зависимость отношения амплитуд $k = A_{\text{бок}}/A_{\text{осн}}$ у боковых и остовной частоты от параметра $m = (A_{max} - A_{min})/(A_{max} + A_{min})$ (рис. 2.12).

Из графика (рис. 2.12)

$$\frac{k}{m} = 0.476 \pm 0.015,$$

что сходится с теоретическим значением 0.5.

Рисунок 2.9 — Разложение в спектр периодической последовательности
цугов, $\nu_0=40~{\rm к}\Gamma{\rm ц}$

$f_{\text{повт}}$	$ u$, к Γ ц
0.5	0.5
1.0	1.0
2.0	2.0
4.0	4.0
5.0	5.0

Таблица 2.1 — Зависимость расстояния между спектральными компонентами от частоты повторения импульсов

Рисунок 2.10 — $\nu_0 = 40$ кГц

Рисунок 2.11 — Амплитудно промодулированная синусоида (слева) и её спектрограмма (справа)

Рисунок 2.12 — График зависимости параметр
аmот отношения амплитудk

Заключение

В данной работе мы изучили понятие спектра и спектрального анализа, а также экспериментально исследовали спектральный состав периодических электрических сигналов.

Конкретно были изучены прямоугольные импульсы, цуги гармонических колебаний, а также гармонические сигналы, модулированные по амплитуде. Кроме того, нами был экспериментально проверен частный случай выполнения соотношения неопределённости.