{ "cells": [ { "cell_type": "code", "execution_count": 2, "id": "280f1e1b-c050-4f4a-b45b-b4d488b55d99", "metadata": { "tags": [] }, "outputs": [], "source": [ "# %load /home/glebi/git/experiment-automation/processing_tools.py\n", "import numpy as np\n", "from scipy.optimize import curve_fit\n", "import pandas as pd\n", "\n", "import matplotlib.pyplot as plt\n", "import matplotlib as mpl\n", "import scienceplots\n", "\n", "plt.style.use(['science', 'russian-font'])\n", "\n", "mpl.rcParams.update({\n", " 'figure.figsize': [6, 4],\n", " 'savefig.facecolor': 'white',\n", " 'figure.dpi': 150.0,\n", " 'font.size': 12.0,\n", "})" ] }, { "cell_type": "markdown", "id": "bb054603-67f5-4418-8c09-e8e3210ffb17", "metadata": {}, "source": [ "U_1 = 12V -- первые данные Lugovcov\n", "\n", "U = 25V -- остальные данные\n", "\n", "Формат:\n", "t[us], U[V], U[V]" ] }, { "cell_type": "code", "execution_count": 15, "id": "01617d5c-6498-42db-bbe0-b24c0bf40ea8", "metadata": { "tags": [] }, "outputs": [], "source": [ "from random import random, randint, choice\n", "def plot_data(filename):\n", " t, x, y = np.loadtxt(f\"data//{filename}\", skiprows=1, delimiter=\",\").T\n", " r = 1 / (2**.5)\n", " a = 150 # Э/А\n", " B = -x / r * a\n", " H = y / r * a\n", " with mpl.rc_context({\n", " 'figure.figsize': [7, randint(3,5)],\n", " 'font.size': randint(10, 16), \n", " 'axes.grid' : random() > .5,\n", " 'axes.facecolor': f\"'{1-random()*.07}'\",\n", " 'axes.grid.axis': choice(['both']),\n", " 'axes.grid.which': choice(['both', 'minor', 'major'])\n", " }):\n", " fig, ax = plt.subplots()\n", " ax.plot(B, H, lw=random()*.3, color=f\"C{randint(0, 7)}\", linestyle=choice(['-', '--', ':']))\n", " ax.set_xlabel(\"Величина поля B, Э\")\n", " ax.set_ylabel(\"Величина поля H, Э\")\n", " fig.savefig(f\"output//{filename.split('.')[0]}.png\")" ] }, { "cell_type": "code", "execution_count": 16, "id": "2c5c0796-12f5-4433-a202-35ce633d9dfe", "metadata": { "tags": [] }, "outputs": [], "source": [ "filenames = [\"Lugovcov.csv\", \"Kazikov.csv\", \"Smirnov.csv\", \"Zakharov.csv\"]\n", "\n", "for f in filenames:\n", " plot_data(f)" ] }, { "cell_type": "code", "execution_count": null, "id": "fa22ed90-4ccd-4957-b3a6-a9c983141716", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.12" } }, "nbformat": 4, "nbformat_minor": 5 }