mirror of
https://github.com/galera951/experiment-automation.git
synced 2024-11-15 10:25:53 +03:00
172 lines
162 KiB
Plaintext
172 lines
162 KiB
Plaintext
|
{
|
||
|
"cells": [
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 1,
|
||
|
"id": "79727a49-1570-42f3-b04a-504f3e61069c",
|
||
|
"metadata": {
|
||
|
"tags": []
|
||
|
},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"# %load /home/glebi/git/experiment-automation/processing_tools.py\n",
|
||
|
"import numpy as np\n",
|
||
|
"from scipy.optimize import curve_fit\n",
|
||
|
"import pandas as pd\n",
|
||
|
"\n",
|
||
|
"import matplotlib.pyplot as plt\n",
|
||
|
"import matplotlib\n",
|
||
|
"import scienceplots\n",
|
||
|
"\n",
|
||
|
"plt.style.use(['science', 'russian-font'])\n",
|
||
|
"styles = plt.style.available\n",
|
||
|
"\n",
|
||
|
"matplotlib.rcParams.update({\n",
|
||
|
" 'figure.figsize': [6, 4],\n",
|
||
|
" 'savefig.facecolor': 'white',\n",
|
||
|
" 'figure.dpi': 150.0,\n",
|
||
|
" 'font.size': 12.0,\n",
|
||
|
" 'savefig.dpi': 250\n",
|
||
|
"})"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 2,
|
||
|
"id": "7bf405b9-f767-462a-8f87-4cf03c2cd95c",
|
||
|
"metadata": {
|
||
|
"tags": []
|
||
|
},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"df = pd.read_csv(\"data.csv\", sep=\"\\t\")\n",
|
||
|
"\n",
|
||
|
"U = df[\"U\"]\n",
|
||
|
"hv = df[\"hv, мэВ\"]"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 3,
|
||
|
"id": "af0f8665-eaf4-4852-844b-d2aa262e5423",
|
||
|
"metadata": {
|
||
|
"tags": []
|
||
|
},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAxAAAAIYCAYAAAD93QokAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAABcSAAAXEgFnn9JSAACQB0lEQVR4nOzdfVyT970//lcSEsVUCWDR3kuwHb3XRLtus96G2t203TTA9tNTj1sh7c7ZOduqpKxztWM7NtTtbN3ZmUHbtf3qWQW06+4rEW+3tQOibW1Lp7nA3qxKFQJIUUKS3x8sKZgbklwJV25ez8eDR0tyXdfnDVzg5319bt4yr9frBRERERERUQTkUgdARERERESpgwkEERERERFFjAkEERERERFFjAkEERERERFFjAkEERERERFFLEvqAFKVx+PB+fPnkZWVBZlMJnU4RERERERx4fV6MTw8jMmTJ0MuDxxvYAIRo/Pnz0OtVksdBhERERFRQgwMDGDKlCkBrzOBiFFW1si3bmBgAEqlMm7XdblcUKvVcb9usrUpVbv8WtOzXX6t6dkuv9b0bJdfa3q2y681vdr1teXr716MCUSMfNOWlEplQn6IibpusrUpVbv8WtOzXX6t6dkuv9b0bJdfa3q2y681vdoNNU2fi6iTjFwux6OPPhp0vlk6tSlVu1J9rVLgzzV925UCf67p16ZU+HNN33alwJ+rNGRer9crdRCpyOVyQaVSYWhoSJLsk1IL7xeKF95LFE+8nyheeC+ll/F+ntKnMERERERElDJSLoGw2WzQ6/UQBCFu13Q6nSgqKorb9YgulkzDjpTaeC9RPPF+onjhvZRZUmIKk9lsht1uh1arhSAIsNlscDgc0Gq1cbm+yWRCXV0dovlWcKiOiIiIiNLReP3clNiFyWKx+P/fbDbDZrPF7dp2ux319fVxux4RERERUTrL+HEmq9UKg8EgdRhERERERCkhoxOI2tpamM1mqcMgIiIiIkoZGZtACIIAjUYTt3UURERERESZICXWQCSCxWKB1WoVfR2XyxXwmlwuh0KhEH1tIiIiIqJEcrvd8Hg8Y14L1r8dLSNHIOrq6mAymeJyLbVaDZVKNeajpqYmLtcmIiIiIkqkmpqagL6sWq0Oe07GjUAIggCn0wmdTheX6w0MDARsb8U9kIkoVXT1DuLZAw4cbu9C/6ALU7OVWFA8A2sWaVGQky11eERElGAbNmzAI488MuY1l8sVNonIuAQiXlOXfJRKJetAENGEiVeHf3BoGFXb27DjUAdc7rFD183HTmHTC69j9UItalfpMVnFKZlEROlKoVBEPfU+oxKIxsbGuE1dIiKaSPHs8A8ODWPF5v043N4V8hiX24Nf7juB4x/0Yfe6xchWZdQ/F0REFEbG/IvgdDrR0tICo9EodShERFGJd4e/antb2GuNdri9C+Yddjy59rao46bocDoZEaWKjEkgBEGA3W5HSUlJwHu+yta+90wmExMNIkoa8ezwn3YOYsehjqja335QwHdX3MxObIJwOhkRpZqMSSB0Oh2ampqCvqfX62G320O+T0QklXh3+J876AjopI7H5fbg2QMC1t9zY1Tn0fg4nYyIUlFa/hVyOp1obW2FwWCQOhQiIlHEdPjnafPx1793ofvcEM6eu4DucxfQcuJMTHEcbj/NBCIBOJ2MiFJRyiUQgiAAGEkSQiktLYXNZoPVakVlZWVU19RoNPEIk4goLiLtXAaedxrd5y7gf/7UHpc4+gfDFxWi6HE6GRGlqpRIIOrq6tDQ0IDu7m7Y7XYAwLJlyzBv3jwAgNVqhVar9R9fUlKC1tZW//vBOJ1OlJaWoru725+M6PV6aLVaWCyWuNWJICISI9aOe/+gC5+67lIMDg0j75JJ//xQ4ecvvY3XTvZEfb2p2dyuOt44nYyIUlVKJBCVlZURjST4VFVVoaqqKuwxGo2Gax6IKOnF2nGfmq3EPfOuwj3zrhrz+vvdH8WUQCwonhFTHMkmmXY6EjO6xASCiKSUEgkEEVGmWlBcgOZjp2I4L3iH/76FRdj0wrGonnxnKWRYs0g7/oFJLBl3OhIzukREJCW51AEQEVFo9y0sglIR3Z9qpUIessM/Q5ONVXcURnW9f1lY5H86/29PvYInfvMGzg+5o7qGlHw7HT2zP/SUId9OR1/avA+DQ8MTEpeY0SUiIikxgSAiSmKxdPhXLww/Had2tR4LigsiutaC4gLUrtIDAOzCWTx3wIHvN76KT37n9/jDkffg9Xqjik0Ksex0NBEi/RkEnpce08mIKHUxgSAiSnKxdvhDyVZlYfe6xVi7ZHbI0Q2lQo61S2bjhXVL/FN65hbm4akHPo3LcrMhdJ1D+X8fxMof7cfxD/qi+4ImUKw7HXX1DiYoIsDr9eKFv72Dd84MxHV0iYhoosi8qfD4KAm5XC6oVCoMDQ1BqeRwMhEl1uDQMP7j6b/h+b90Bn1fqZDHNId/ZFGxgMPtpyNeVHzuvAtP/OYN/OyP7XC5PVAq5Pi3uz6Bh794M9STkmtp3RO/OYbvN74W9XnfM96akIXKRzq6Yd7Rhr/+/UMAwGfnXIE/Hn0/4vMLciZj10OLMWdWXtxjIyLyGa+fywQiRr5v7MDAAJRKJeRyORSKiVl4R0SZ6b9//ya+t/Morsybgusunyb5LkInTvXBvMOOPa/+A5flZsNu+QIumZxcD1TurW2OaRH60ptm4sWqpeMeF+muTh/0fITHGl/D/x0W4PUC2SoFvvX5G1BhuBb/8rPDEU2xKsiZjK7e88hWKfCL+2/HytuvifrrIiIKx+12w+PxwOVyQa1WM4GIN18C4fPoo49i48aN0gVERGnN6/VibtXv4Djdj//52iexZlGR1CH5/eno+/B6gc/OvQIA4PF48fY/enH9lRppAwOw9LGX0OI4G/V584vy0fzo8pDvh9vVCfh4ROj7ZXOwde9x/Oi3b2Dgwsji7C9/ehY2ls3BFXlT/Ncy77Bj+0Eh7LUeWXEzvr71Zex57QMAwPp7bsR3V9wCuVwW9ddHRBTMxo0b8dhjj/k/ZwIRZxyBIKKJdLi9C5/9LxsumZyF409+Keme9I+2/ZCAr297GWsXz8YG4y2YPnWyZLHEOgKhnpSF+5ddi5JbLsOnrrsUqqyP/777dnWKZNTg09ddis4Pz+EfPYOYX5QPy2o95hdND3psJNPJ3B4PHq1/FT/9w1sAgM/NvQLbHvg0d2YiorjgCESCcQ0EEU2kSutf8Ks/d2LNoiL8z9c+KXU4YZm3t+F/97wNAMhVq/Ddlbfgq0tmIyvKBcPxEOsaiNHUk7Kw6IYZKLnlctwz70rU7HoNz+x3RHz+sptmYtUdWhhvvwYyWXxGC3715w584+lXcMHlwfVX5KDxocW4ero6LtcmIhqvn8tdmIiIkpxzYAgv/O1dAMCaxckzdSkUy2o9/vSIATdfrUHPwBAeeq4Vd3zvTzjcfnpC4/B4vDHW0ZDhJ/86D//fgkIU5EzGwIVh/OHI+/jWsy04+ObpqHd1OvhWFxbdMCNuyQMAfOUzhfjTdwyYqcnGsMeLaRyBIKIJxBGIGHEEgogmyra9x/GtZ1tww5U5ePmHn4trRzSR3B4PfrlvpG5Ez8AQAKD6izfhOytuSWi7Xq8X2w8J2LLn7/jTIwZ851f2qEYM1i6ZjSfX3gZgJAl5/Z0eNL3+AQ68cQqfuq4Am379etQxJWpXpw96PsLAhWHMnjkNAPx1OWQyWcQLvImILsZdmBKECQQRTZS+QRcaXz4JzRQlVnwy9XbeOdt/AT/Y9Rp+uf8EXnrEgE9ee2lC2/qPX/4Nv2kdGbF5rGwOHrzzuojXLCwoLhhT++Jiid7VSawte97Gqye7IZfJ8Ks/d4ZdlB3tlr9ElDmYQCQIEwgioui8e2YAV42ap7/V9ndckT8Fn51zRVxGVZqPfQBT3cs45RyEUiHHd1fegv/8XDEUcnnEOx2N16lO1K5O8fB+90e4+aEX4XJH9s/6guIC7F63GNmq5KrdQUTSG6+fy78aREQ0IUYnD50fnkP1r+y44PKg5JbL8PgqPa67bFrAOZF
|
||
|
"text/plain": [
|
||
|
"<Figure size 900x600 with 1 Axes>"
|
||
|
]
|
||
|
},
|
||
|
"metadata": {},
|
||
|
"output_type": "display_data"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"plt.plot(hv, U, \".--\", markersize=12, lw=1)\n",
|
||
|
"plt.xlabel(r\"Энергия кванта $h\\nu$, мэВ\")\n",
|
||
|
"plt.ylabel(r\"Сигнал фотоответа $\\Delta \\Sigma/N_0$\")\n",
|
||
|
"plt.savefig(\"A.png\")\n",
|
||
|
"plt.show()"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 4,
|
||
|
"id": "df462028-8516-4961-8748-b062531c5b61",
|
||
|
"metadata": {
|
||
|
"tags": []
|
||
|
},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAxMAAAIZCAYAAADdtmKCAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAABcSAAAXEgFnn9JSAACW6UlEQVR4nOzdfXyT9b0//lcSEikVmrYKeE9T2Kp416So25C7tuLm1AlN674wPfxmGzlnns0zaKyOAesmpODZjruRFLaJgzNpC6jb2SZNK3fb1LYBFbUKuVq8hQpt2loCSZP8/mCJLU3SJL3SK0lfz8ejj63J57o+79LL9Hpfn5u3zOv1ekFERERERBQhudQBEBERERFRYmIyQUREREREUWEyQUREREREUWEyQUREREREUWEyQUREREREUWEyQUREREREURkndQDJwOPx4OzZsxg3bhxkMpnU4RARERERicLr9aK/vx/jx4+HXD50HCKhkwmLxQKj0Yja2lpoNJqoz2E2m2G32yEIAjQaDUwmE7RabdjnOHv2LFJTU6Pqn4iIiIgo3vX19WHChAlDXk+4ZMJoNMJqtUKj0UAQBFit1qjPVVVVBQCora31v2YwGKDT6VBeXg6TyRTWecaNO//P2NfXB6VSGXU8F3K5XEhNTRX9vPHWp1T98mdNzn75syZnv/xZk7Nf/qzJ2S9/1uTq19eX7373QgmXTAy8wTcajbBYLFGdRxAEnD59ekjCYDab0dzcjKqqKhQWFqKgoGDYc/mmNimVypj8QmN13njrU6p++bMmZ7/8WZOzX/6sydkvf9bk7Jc/a3L1G2wq/5hdgG02mzFr1qyA71VUVPjbSEkul2P16tUB56clU59S9SvVzyoF/l6Tt18p8PeafH1Khb/X5O1XCvy9SkPm9Xq9UgcRLaPRiKqqKthstojXTBQWFvrXS5SVlQ16TxAEZGdnQ6PRwGazDXsul8sFlUoFp9MpSVZKiYXXC4mF1xKJidcTiYXXUnIZ7vcpfTojkcLCQqjVauTl5Q15z263j35AREREREQJZswmE+Xl5ejq6gq4a1NzczMARLSjE3A+c7vwy+12ixIvJY94GpqkxMZricTE64nEwmspcbnd7oD3s6HwtxyAb3cn39qJcKWmpkKlUg36qqysjEWIlMAUCgXWrFkDhUIhdSiU4HgtkZh4PZFYeC0lrsrKyiH3ssOVP0i43ZxizWKxwGKxoLy8POKRiUDbczErJyIiIqJEsGrVKjzxxBODXvNtDRsMk4kB7HY79Ho9ioqKwq4xMZBU24IREREREY2UQqGIeESJj80HKC0tRUFBwaAidkREREREFBiTiX8xGo0AwESCiIiIiChMTCYAVFdXQxCEIYmEIAgSRUREREREFP/GfDJhsVhQX18fcEQimnUTRERERERjRdIvwLbb7WhubkZBQcGQ93yjEZzaREQEdHQ7sHWfDQdbO9DrcGFiihKzc6bgwbkaTE5LkTo8IiKKQwmdTPimIYWqWK3X62GxWGA2m1FWVuZ/3W63Q6fTQaPRQKfTBTz3wPZERPFGrJt/h7Mf5dtasP1AG1xuz6D3Go+cwLrdb2HpHA2qlugwXsV944mI6AsJl0xUV1ejtrYWnZ2dsFqtAID8/Hzk5eUBAMxmMzQajb99YWEhmpub/e/76PV62O12/zkCmTVrVgx+AiKikRHz5t/h7MeijXtxsLUjaBuX24Pfv3IMRz/twa4V85CiSrg/HQmHo0RElChkXq/XK3UQic7lckGlUvmL1snlclZ9JKKYCOfm32d2zuRhb/4f+d1reHavLez+l82fjqeX3RJ2e4pMqEQRAJQKOUeJiGhUuN1ueDwef9E6p9MZsJ7amF+ALabU1FSoVCpUVlZKHQoRJanybS1hJRIAcLC1A8btwUdfT9od2H6gLaL+t+0X0NHtiOgYCo8vUXx2ry1gIgF8MUp038ZX4HD2j3KERDSWVFZWQqVShax+DTCZEFVfXx+cTidWrVoldShElITEvvnfui/4TWswLrcHW/dx2+xYEDNRJCIaqVWrVsHpdKKvry9kO058FZFSqQw4/ENEJIbn9kd38//1JxtwWXoKPj/rwu3XTkFlSS4A4EDryajiONh6EivvmRnVsfEkntYlRJso/mjRDVxDQUQxoVAowpq2z2SCiChBhPvU+kLvf9qD9z/tAQBMVU/wv953NrppMr0OV1THxYt43L0q2kRx6z4hKRI7IkpcTCaIiBJEtDfx0y5NxY+LbkLq+HG4MuOLua8TU6IbSf2s5yzaP/sc0y69OKrjpRSvu1dFmygmyygRESUurpkgIkoQ0d78a6ZMhP4r0/CN3Ctx4zXp/tdn50yO6nztn/Xhhh++hLvXN6D2n+0463RHdR4pxOu6hGgTxUQfJSKixMdkgogoQUR78z87Z0rA1x+Ykw2lIrI/Awq5DLNzLoVMBux95yT+v2f+gS99fzc+7jwTVWyjKZa7V3V0O7DhpSO4t6oRC9a+jHurGrHhpbfDOvbDU3043Xsuorh8ok0wiYjEwmlOREQJ4oE52Vi3+0hEc+uVCjkenKsJ+N4UdQqW3J4VUZ2JB+Zm4+llt+CDU33Ytt+GP+wXkJaqwuXpXywCPth6EjdcnY60CaqwzzsaYrEuIdr1F2fO9eNPLR9i+4E27H3nBKKt+BQsUSQiGi1MJoiIEkQ0N/9L54TemahqqQ7HTvSGXQSvaokOAHD1Jal4fNGNMH7renza5YBMJgNwftpN0VP74PF6cd8tV+OBudn46pcu9b8vJbHXJUS7/mLd7rfwy7++i94BC+Bvm3EJmmyn4faEn1UMTBS7+pxIT42v5I2IxgZOcxKRy+WCy+WC250484eJKLFULdXh+qvUYbUdePMfTIpqHHatmIdl86cHnfKkVMixbP507F4xf8juRgq5HFdmfrGo+6PTfbjqklQ4nG7878E23PkzC7TGP+Pn//cOTtqlLXYX7fqCZttprNpxCLX/bEfrx91we86PQES7/mKcQobes/2Ydmkqnlh0A448dQ/qV92B78wJPIIUjC9R3P/OSVz7gxfw5K43g/6MI5mGRURjk9vt9t/bhiLzeqMdXCUfl8sFleqLJ0KrV6/GmjVrpAuIiJKa6YUj+OmuNyGXAYEeZCsV8qi2Nj1fd0HAwdaTI6q74PV68fqxU3huv4Cdrx5H37nzT+AVchk2G74C/VemhX0uMd1b1YjGIydGfJ4UlQJfmjoJb33YFfDfPxilQo7WX9wLrxc4eqIHX/3SZMjlX4zYhDPS4TM7Z7I/ufveb1/D1n3nR6sunTQej33reiybNx3KcfKQ07B8MY32NrhElBjWrFmDtWvX+r93Op0B66kxmRCBL5no6+uDUqmEXC4Pq8gHEVG03vqgCxcpFXix6cMR3/zHUq/DhZ2vHcdz+2xoFk7j7afuxVWXnB/JePcjO8arxiFrcnhbzEZTZO6znrPYtOc9TL9sEj463Yef1L0Z8c9wl/YKTFWn4K0P7DjyQRfOjGD3qh8X3RRyK1eHsx/G7VZs2y+EffPv9XrxQtOHWFt7GLaTnwMAsqdcjMe+df2/ksPwkpPR2gaXiBKD2+2Gx+OBy+VCamoqk4lY8iUTwf6RiYgI+OBUH66+5IspUUVP7cXLb3yCOddOwYNzs3FP3lUBn45H83T9+Gef4+m/vos/7BfgcLqRNfli/PXxfNzwwz9FvIC99Rf3+pMVt8cD4eTn+M6vDuLtD+0R/gsAC66fihfLFwzbLppRIle/B1v32bDuhbfQ0X024tiWzZ+Op5fdEvFxRJTchrvPZTIhAiYTRDQaftt4FF/78mTkXJEmdSgj5vZ4UPzz/ah/8xP/TkbqCUqUfDULD8zN9tfDiHTqz0/vz8Uze95D3avH/YuZdZoMPHrXTNytuxLff/b1iBawB7vBXrD2ZTTZTod9Hp9Z2ZloXL0w4uMi8flZF9a/8Bb+5y+tER13YeJERAQMf5/L8UwiogRw5IMu/NfWZsjlgNV0d9hTg+KVQi7Hzh/Owwen+rD9gIA/7Lfhw9NnYLa8D7PlfSy5XYNNpbdFvMh53pqX/d/
|
||
|
"text/plain": [
|
||
|
"<Figure size 900x600 with 1 Axes>"
|
||
|
]
|
||
|
},
|
||
|
"metadata": {},
|
||
|
"output_type": "display_data"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"plt.plot(hv, U**.5, \".--\", markersize=12, lw=1)\n",
|
||
|
"plt.xlabel(r\"Энергия кванта $h\\nu$, мэВ\")\n",
|
||
|
"plt.ylabel(r\"Сигнал фотоответа $(\\Delta U/N_0)^{1/2}$\")\n",
|
||
|
"plt.savefig(\"B.png\")\n",
|
||
|
"plt.show()"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 5,
|
||
|
"id": "3012c290-e0aa-465b-af77-6f2f872661e0",
|
||
|
"metadata": {
|
||
|
"tags": []
|
||
|
},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"data": {
|
||
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA14AAAI3CAYAAACLVIrUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAABcSAAAXEgFnn9JSAACvZklEQVR4nOzdeVhUZf8G8PvMMMOO4AIoi7ivCLjhvlum5F4ppllqu5XtvWlatu+rlWZlGZkJmljmloql4gqC+4ICyiIq6wCznd8fKL9MwBmcc84M3J/r8iqZZ865ed+T8p3neb6PYNJliCAiIiIiIiLJqJQOQEREREREVNex8CIiIiIiIpIYCy8iIiIiIiKJsfAiIiIiIiKSGAsvIiIiIiIiibHwIiIiIiIikhgLLyIiIiIiIomx8CIiIiIiIpIYCy8iIiIiIiKJsfAiIiIiIiKSGAsvIiIiIiIiibHwIiIiIiIikhgLLyIiIiIiIomx8CIiIiIiIpIYCy8iIiIiIiKJOSkdwN7kFxTildc+xKYtOwAAm3//CQEB/rd0zZISHWJW/oYtW//BmTPpKC0rg5enJ9q1bYmRIwZj7J23w8lJbYv4RERERERkhwSTLkNUOoS92L3nIF6c+zZycvMqv3arhdfpM+fw0OP/w/kL2QAATw93+Ph4IysrBwajEQDQLaIzvv7ibbi7ud7aN0BERERERHaJSw0BGAxGvP/xYjzw0HPIvXgJfXp1s8l1S3SllUWXn29jfPXZm9jz91psiP8Be/+Jx+OP3AcA2H8wFe9/tNgm9yQiIiIiIvvDwgtAzC+/Yen3v8DHuwG+/vxNPDQj2ibXjVuzvnKm66N3X8HA/pGVrzk7a/HYQ9MwcsRgAMCa+A0oKyu3yX2JiIiIiMi+sPACYDKZENkjHKtXLkb/vj1tdt3TZ87Bzc0VrVo2R0R4pyrHXCvGysrKkXY2w2b3JiIiIiIi+8HmGgBuG9Yf06dOhEpl2zp0wdw5WDB3DgwGY7VjPD09Kv9dbzDY9P5ERERERGQfWHgBCAxoKun1NZrq/2c+cuQkAECtViGkeaCkOYiIiIiISBlcaqigwsJi/BK7DgAwcsQQNPDyVDgRERERERFJgYWXQkwmE16c9zYuXrwEd3c3PPX4A0pHIiIiIiIiibDwUkBpaRmefGYBtm7fBScnNT5+7xU0a+qndCwiIiIiIpII93jJ7PLlfDzy5FwcSjkKjUaDd994Cf369LD5fcxmM0zmin8XBEAQBJvfg4iIiIhITqIoQhQr/l2tgs2b40mJhZeM0s5m4KHHX0JGZhbc3d3wyfvz0bd3d0nuZTIDqScuSnJtIiIiIiKldW7bBA5Ud7HwkktyylE89PhLKCgoQmBAUyz65HW0aR2idCwiIiIiIpIBCy8ZnDh5Bg899hIKCosQ2qkdvvzsDTRq6CPpPf+7slCr1Up6P3Jser2+8t/5rNDN8HkhS/FZIWvweSFLiKIIw9Wzbx1tJw0LL4llns/CjEdeQEFhESJ7hOPLT9+Aq6uL5Pf9954urVaL0NBQye9Jjis1NRXl5eVwdnZG586dlY5Ddo7PC1mKzwpZg88LWcJkMiEpKQmA4/UwcKBVkY7HbDbjhZffRl7eZXRo3xpffLxQlqKLiIiIiIjsi80Lr+LiEuz4Zw82btmB3Ny8G14/fPQEjp84Df3VKUJHtyZ+Izp3G47O3YZjz77k615bu24TDiSlQq1W4a3Xnoe7u5tCKYmIiIiISEk2XWq4Jn4j3njnc+h0pQAAlUrAA9PuxuxH74eTkxoAoFap8c+u/XjsqVeg0Thh/W/LbBmhVsbd/eB1v9eVllb++0OzX4LGSVP5+8GDeuOJR++v/L1oNsN0rW/7td6WVy1bHgsA0Gg0eHHuOzfNcc9dd2LSXXdanZ+IiIiIiOybzQqv/QdT8PL89+Dl5YHBA3tDq9Xg8JGTWPLdChxMPoKvP38Trq4uaN+uFdq3a4Wjx07hjw1bbXX7W3LsxOlqXzt9Jv2637dv18ri6xYWFQMAysrKa7zHNXl5ly2+NhFRXaA3mrDqYDrikjOQX2qAt6sG48OCMDEiGNqrH9gRERHVBTYrvJZ8+zPumjAKLz37KJyd/78TzdbtO/HBJ99g9tPz8dVnb1bOfAkq+9kMdzRpS63fO27MCIwbM6LK17asj6n1dYmI7JXBZMafpwuwPVMH89acWhdL8SmZmBmTiNyisuu+HpuUgTlxB7A0OhJRoYG2jk9ERKQIm+3xysnJwysvPXFd0QUAgwf2waqYL9G4kQ9emnfz5XZERGS/4lMyMWz5UcxNyMKmMwXYcjwbsUkZmLJsJ4LmrcG6lEyLrzNuScINRdc1uUVlGLskweLrERER2TubFV5+fo2hquboaBcXZ7z9+osIDmqGBW98bKtbEhGRjK4VS5dLjVW+bmmxpDeaMDMmESazWOM4k1nEjJhE6I2mWmemG+mNJsTsTcPEbxIw7LMtmPhNAmL2pvF/ZyIiidms8PL08EB+QSEA4MqVApy/kHPDmNmPTkfH9m3w3kdf2+q2REQkA1sWS6sOplc70/VfuUVliE3KsCorVS8+JRNB89ZgyrKdiE3KqPWMJRERWc9mhddDM6Px7Itv4Oy5TEyIfhhR4+/HpctXbhh394RR6N41FLt277fVrYmISGK1KZYuFpUh9UI+dp25iE1HsxCXlI4fEs/gvc1Hrbp3XDILL1vg8k4iImXZrLlG61YhePHZR/D+R1+jsLAYwUHN4O5W9blVgwf2wacfNsBjT82z1e2JiEhC1hY/cckZ2JWWh8+2H7/le+fr9Ld8DaXYS9dGa2csMxY2ZVdJIiIbs+k5Xq1bheDzjxdaNDYirBN2bo2z5e2JiEgi+aXWHXqfr9Ojk38DNPFwhoezBp4uTvBwdoKHVoPDWfk4X1B684tc5e2mvfkgO2RPXRtrM2M5uXuItKGIiOqZWy68ru3r8m7gdcthiIjIPnm7am4+6N/j3bRYMKoLFozqcsNrMXvTMGXZTouvNT4syKp724Nry/qqm2G6tqxvzawBshRftZmxZOFFRGRbt7zH6+Sps5j5yAt4fM4r2LhlBwyGqrtdERGR47K2+Klp/MSIYPh6ulh0HV9PF0wId6zCy966NuqNJpzMLbLqPY68vJOIyF7dcuHVo1sXrIr5Eo8/fB8OJqVi3D0P4tU3PsHB5MO2yEdERHbAlsWS1kmNpdGRUKuEGq+jVglYGh1Z7V6jM3lF+GX/WZQb7KsNulRdG61tA5+UeRlPrdqHgLmrcehCvqXxATju8k4iIntmsz1e7du1Qvt2j+C5OQ/hn1378NPPa/DaG59g+LD+GDNqOAIC/G11KyIikpnWSY1voiMx5uvtqGke52bF0jVRoYFYM2sAZlSxBwqoKN5utgfqyx0n8f6Wo2jk7oypPVtgRu9W6NzM28LvSDpSLOuzZr/YP6dz8djKfUg+//+dhb1dNVbt03PE5Z1ERPbOps01AEClUqF/357o37cnSkp0+HPTdry84D2YzSLuHDUUd9w2CB4e7ra+LRERSaywzFBj0WVJsfRvUaGByFjYFLFJGRVd/3R6eLtpMT4sCBPCg25avDVr4IoAb1eczy/Fx1uP4eOtxxAZ0ggzerfGpG7N4eli3b40W7G2Ecnfp3Px/uYjCAvwQXigD5r8Z2bR2v1iDd2dkXz+CrROKoztEojpkS0xsLUvWixYa9FMnCMu7yQicgSCSZdR8yJ0G7mQlYO16zZjw6btCAkJwpio4RjQrydUKpsdJUb/YjKLOHQsFwCg1WoRGhqqcCKyZ6mpqSgvL4ezszM6d+6sdByyQ8XlBrR7LR4XCkrxeHc/+LursT2jBKLG1apiydZMZjM2Hs3CNztPY21KJoxXixN3rRPu6dYcM3q3Qu8WjSEINS9rtKWJ3yTc0qHPzRq4IjzQB2EBPujctAGeWLUPl0puvufK19MFGQvHQuukxi/7z2J4+6Zo6O5c+fq6lEyMraGAAypmLK1p+HGzdvn8s4WsweeFLGEymZCUlAQA6NLe96bL1u2JbIXXvx1KOYbf1m1E4t4k9OnVDWP
|
||
|
"text/plain": [
|
||
|
"<Figure size 900x600 with 1 Axes>"
|
||
|
]
|
||
|
},
|
||
|
"metadata": {},
|
||
|
"output_type": "display_data"
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"plt.style.use(['no-latex'])\n",
|
||
|
"\n",
|
||
|
"for style in styles:\n",
|
||
|
" matplotlib.rcParams.update({\n",
|
||
|
" 'figure.figsize': [6, 4],\n",
|
||
|
" 'savefig.facecolor': 'white',\n",
|
||
|
" 'figure.dpi': 150.0,\n",
|
||
|
" 'font.size': 12.0,\n",
|
||
|
" 'savefig.dpi': 250\n",
|
||
|
" })\n",
|
||
|
" plt.style.use([style])\n",
|
||
|
" \n",
|
||
|
" plt.clf()\n",
|
||
|
" plt.subplots_adjust(bottom=0.15)\n",
|
||
|
" plt.plot(hv, U, \".--\", markersize=12, lw=1)\n",
|
||
|
" plt.xlabel(r\"Энергия кванта $h\\nu$, мэВ\")\n",
|
||
|
" plt.ylabel(r\"Сигнал фотоответа $\\Delta \\Sigma/N_0$\")\n",
|
||
|
" plt.savefig(f\"output//A-{style}.png\")\n",
|
||
|
" \n",
|
||
|
" plt.clf()\n",
|
||
|
" plt.subplots_adjust(bottom=0.15)\n",
|
||
|
" plt.plot(hv, U**.5, \".--\", markersize=12, lw=1)\n",
|
||
|
" plt.xlabel(r\"Энергия кванта $h\\nu$, мэВ\")\n",
|
||
|
" plt.ylabel(r\"Сигнал фотоответа $(\\Delta U/N_0)^{1/2}$\")\n",
|
||
|
" plt.savefig(f\"output//B-{style}.png\")"
|
||
|
]
|
||
|
}
|
||
|
],
|
||
|
"metadata": {
|
||
|
"kernelspec": {
|
||
|
"display_name": "Python 3 (ipykernel)",
|
||
|
"language": "python",
|
||
|
"name": "python3"
|
||
|
},
|
||
|
"language_info": {
|
||
|
"codemirror_mode": {
|
||
|
"name": "ipython",
|
||
|
"version": 3
|
||
|
},
|
||
|
"file_extension": ".py",
|
||
|
"mimetype": "text/x-python",
|
||
|
"name": "python",
|
||
|
"nbconvert_exporter": "python",
|
||
|
"pygments_lexer": "ipython3",
|
||
|
"version": "3.10.12"
|
||
|
}
|
||
|
},
|
||
|
"nbformat": 4,
|
||
|
"nbformat_minor": 5
|
||
|
}
|