Лабораторная работа 3.5.1 Изучение плазмы газового разряда в неоне.

Брюквина Дарья 12.09.2022

1 Аннотация.

В данной работе исследовалась вольт-амперная характеристика тлеющего разряда в плазме методом зондовых характеристик с испотльзование двойного зонда. Также были найдены значения характерных величин, таких как концентрация ионов, дебаевский радиус плазмы и плазменная частота колебаний электронов.

2 Введение

Известно, что сильно ионизированный газ проводит электрический ток по закону, отличному от классического описания проводимости газа с малым количеством заряженных частиц. Исследованию проводимости сильно ионизированного газа (плазмы) и посвяженна данная работа.

В ходе работы снималась Вольт-Амперная характеристика тлеющего разряда с использованием метода зондовых характеристик. По полученным ВАХ находились характеристики плазмы, необходимые для анализа и классификации плазмы.

Результатом работы стали найденные характеристики пламы, а так же сделанные выводы о характере проводимости плазмы.

3 Основная часть

Для исследования тлеющего разряда использовался метод двойных зондов, т.е. системы из двух одинаковых проводников - зондов, расположенных на небольшом расстояниии друг от друга. В системе между зондами поддерживалось разность потенциалов U, такой, что $|U| << |U_f|$, где U_f - плавающий потенциал, т.е. потенциал, до которого заряжается проводник, опускаемый в плазму.

Для системы из двух зондов справедлива зависимость тока I от напряжения U на зондах и параметров плазмы:

$$I = I_{iH} \tanh \frac{eU}{2k_6T_e}, (1)$$

где $I_{i\text{H}}$ - ток насыщения (максимальный ионный ток для для единичного зонда), U - напряжение на зондах, k_6 - константа Больцмана, T_e - температура электронов в плазме.

Ионный ток насыщения I_{i} н находился из ассимптот, проведенных к графику вольт-амперной характеристики, а из наклона прямой $dI/dU|_{U=0}$ находилась температура плазмы T_e .

Для нахождения концентрации Ионов в плазме использовалась полуэмпирическая формула Бома:

$$I_{iH} = 0, 4neS\sqrt{\frac{2kT_e}{m_i}},\tag{2}$$

где n - концентрация ионов, e - заряд электрона, $m_i=10\cdot 1, 6\cdot 10^{27}$ г - масса иона неона, S - площадь зонда.

Плазменная частота колебаний - один из важнейших параметров плазмы. Он определяет характероне время отклика плазмы на флуктуацию заряда. Плазменная (или ленгмюровская) частота находилась по формуле:

$$\omega_p = \sqrt{\frac{n_e e^2}{\varepsilon_0 m_e}},\tag{3}$$

где $m_e=9,1\cdot 10^{-31}$ кг - масса электрона, $\varepsilon_0=8,9\cdot 10^{-12}\Phi\cdot {\rm M}^{-1}$ - электрическая постоянная.

Дебаевский радиус плазмы - другая описательная характеристика плазмы, отражающая пространственный масштаб основных плазменных явлений, рассчитывался по формуле

$$r_D = \frac{\varepsilon_0 k T_i}{ne^2},\tag{4}$$

где предполазалось, что температура ионов $T_i \approx 300 K$.

Последним определяемым в ходе работы параметром плазмы являлось число частиц N_D в дебаевской сфере (т.е. в сфере, радиус которой равен дебаевскому). Данный параметр определялся по формуле:

 $N_D \approx n \frac{4}{3} \pi r_D^3. \tag{5}$

4 Экспериментальная установка

Схема установки для исследования плазмы газового разряда в неоне представлена на рис. 1.

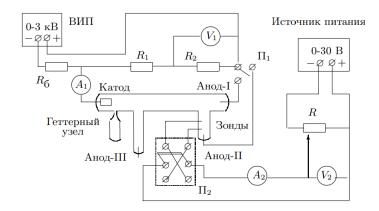


Рисунок 1. Схема экспериментальной установки.

Стеклянная газоразрядная трубка имеет холодный (ненакаливаемый) полый катод, три анода и геттерный узел — стеклянный баллон, на внутреннюю поверхность которого напылена газопоглощающая плёнка (геттер). Трубка наполнена изотопом неона 22Ne при давлении 2 мм рт. ст. Катод и один из анодов (I или II) с помощью переключателя П1 подключаются через балластный резистор R_6 (' 450 кОм) к регулируемому высоковольтному источнику питания (ВИП) с выходным напряжением до 3 кВ При подключении к ВИП анода-І между ним и катодом возникает газовый разряд. Ток разряда измеряется миллиамперметром A1, а падение напряжения на разрядной трубке — цифровым вольтметром V1 подключённым к трубке через высокоомный делитель напряжения с коэффициентом $(R_1 + R_2)/R_2$ При подключении к ВИП анода-ІІ разряд возникает в пространстве между катодом и анодом-ІІ, где находится двойной зонд, используемый для диагностики плазмы положительного столба. Зонды изготовлены из молибденовой проволоки диаметром d=0,2мм и имеют длину l=5,2мм. Они подключены к источнику питания (0–30 В) через потенциометр R. Переключатель П2 позволяет изменять полярность напряжения на зондах. Величина напряжения на зондах изменяется с помощью дискретного переключателя "V" выходного напряжения источника питания и потенциометра R, а измеряется вольтметром "V2". Для измерения зондового тока используется микроамперметр А2.

5 Результаты измерений и обработка данных

5.1 Первая серия экспериментов

В первой серии экспериментов испольовался анодI, с помощью которого определялся напряжение зажигания $U_{\text{зажиг}}$, т.е. показания вольтметра V_1 непостредственно перед загоранием неона. Оно оказалось равным

$$U_{3336} = 212 \pm 2B$$

. Затем была снята вольт-амперная характеристика разряда $I_p(U_p)$. ПОлученные данные представлены в таблице 1.

Tаблица 1: BAX разряда $I_p(U_p)$.

$U_p,(v)$	$I_p, (mA)$
31,8	1,4
31, 5	1,6
30, 2	1,8
29, 6	2,1
29, 1	2,3
28, 3	2,6
28, 0	2,8
27,6	3, 2
27, 2	3,6
27, 1	4,0
27,0	4, 4

На основе полученных данных был посроен график зависимости тока разряда от напряжения $I_p(U_p)$. Полученный результат представлен на рисунке 2:

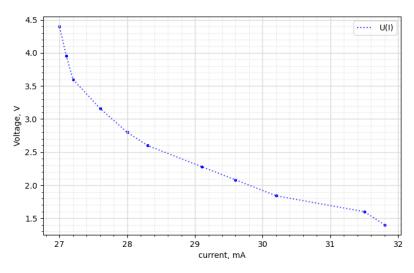


Рисунок 2. График зависимости $I_p(U_p)$.

5.2 Вторая серия экспериментов

Во второй серии экспериментов находилась вольт-амепрная характеристика двойного зонда с использованием Анода II при разных токах разряда. Полученные данные представлены в таблице 2:

Tаблица 2: BAX разряда $I_p(U_p)$.

I_p , MA	$U_p,(V)$	$I_p, (mA)$	I_p , мА	$U_p,(V)$	$I_p, (mA)$	I_p , мА	$U_p,(V)$	$I_p, (mA)$
5,04	25,0	4,80	3,00	25, 0	2,72	1,48	25	1
	22,0	4,64		22, 0	2,68		22,0	0,88
	19, 0	4,55		19, 0	2,59		19, 0	[0,76]
	16, 0	4,41		16, 0	2,51		16, 0	[0,64]
	13, 0	4,21		13, 0	2,41		13, 0	0,52
	10,0	3,89		10, 0	2,26		10, 0	[0,40]
	8,0	3,57		8,0	2,09		8,0	[0, 32]
	6,0	3, 14		6, 0	1,84		6,0	[0, 24]
	4,0	2,53		4,0	1,50		4,0	0,16
	2,0	1,88		2,0	1,03		2,0	0,08
	0, 5	1,25		0, 3	0,58		0, 4	0,014
	-0,4	-0,06		-0, 6	-0, 18		-0, 3	-0,012
	-2,0	-0,74		-2, 0	-0, 19		-2, 0	-0,08
	-4,0	-1,52		-4, 0	-0,70		-4, 0	-0,16
	-6,0	-2,21		-6, 0	-1, 11		-6, 0	-0,24
	-8,0	-2,74		-8, 0	-1,42		-8, 0	-0,32
	-10, 0	-3, 15		-10, 0	-1,63		-10, 0	-0,40
	-13,0	-3,53		-13, 0	-1,81		-13,0	-0,52
	-16, 0	-3,76		-16, 0	-1,90		-16, 0	-0,64
	-19,0	-3,91		-19, 0	-1,97		-19, 0	-0,76
	-22,0	-4,04		-22, 0	-2,04		-22,0	-0.88
	-25,0	-4,18		-25, 0	-2, 12		-25,0	-1,00

На основе подученных данных были построены графики Вольт-амперных характеристик Ситемы зондов при различных токах разряда. Полученный совмещенный график ВАХ представлен на рисунке 3:

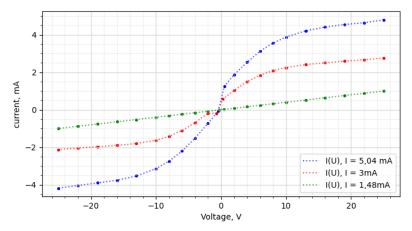


Рисунок 3. График зависимости $I_p(U_p)$ при различных токах разряда I.

Из полученных графиков были найдены значения ионных токов (по проведенным ассимптотам к графикам). Так же были найдены значения производной $(dI/dU)|_{u=0}$ для тех же значений тока разряда. Результаты анализа графиков представлены в таблице 3:

Tаблица 3:Pезультаты анализа графиков I(U).

$I_p, (mA)$	$I_{iH}, (mA)$	$(dI/dU) _{u=0}, (mA/V)$
5,04	4,9	0,46
3,00	2,9	0, 27
1,48	1,5	0, 15

Анализ параметров плазмы

На основе анализа графиков Вольт-Амперной характеристики тлеющего расряда в неоне, используя формулу 1, а также значение производной $dI/dU|_{u=0}$ была найдена температура ионов в плазме $T_e=5,2$ вВ.

Используя формулы, приведенные в основной части, были найдены плазменная частота ω_p и дебаевский радиус r_D для различных значений тока разряда. Также был приблизительной найдено количество частиц в деваевской сфере N_D =. Результаты вычислений представлены в таблице 4:

Таблица 4:Характеристики плазмы

I_p, mA	$\omega_p, \mathrm{c}^{-1}$	r_D, cm	N_d
5,04	$14 \cdot 10^5$	$51 \cdot 10^{-5}$	32
3,00	$11 \cdot 10^{5}$	$69 \cdot 10^{5}$	41
1,48	$6 \cdot 10^{5}$	$97 \cdot 10^{5}$	56

6 Вывод

В данной работе было проведено исследование вольт - амперной характеристики тлеющего разряда в плазме неона. На основе полученных данных были найдены основные параметры, характеризующие плазму, при различных токар разряда.