Лабораторная работа 3.6.1 Спектральный анализ электрических сигналов.

Брюквина Дарья

19.09.2022

1 Аннотация.

В данной работе исследовался спектральный состав периодических электрических сигналов, создаваемых генератором прямоугольных сигналов, с использованием осциллографа.

2 Введение

Одной из основных проблем хранения, передачи и исследования аналоговых сигналов является нахождение формульного описания этих сигналов.

Для данных целей используется метод разложения колебаний в ряд Фурье, состоящий из элементарных функций, для дальнейшего анализо полученного выражения.

Данная работа посвящена исследованию частот, глубин модуляции и отношению амплитуд для раздичных электрических сигналов, создаваеммых генератором прямоугольных сигналов.

3 Основная часть

3.1 Разложение сложных сигналов на периодические колебания

В данной работе используется разложение сигнала в функциональный ряд, состоящий из функций синуса и косинуса, взятых с различными коэффициентами. Такой ряд называется рябом Фурье.

Пусть задана функция f(t), которая повторяется периодически с частотой $\Omega_1 = \frac{2\pi}{T}$, где T - период повторения импульсов. Её разложение в ряд Фурье имеет вид:

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos(n\Omega_1 t) + b_n \sin(n\Omega_1 t) \right]$$
(1)

или

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} A_n \cos(n\Omega_1 t - \psi_n).$$
 (2)

Если разлогаемый сигнал чётен относительно t = 0, то в тригонометрической записи остаются только члены, соответсвующие функциям косинусов. Для нечетного сигнала в тригонометрической записи остаются только члены, соотвествующие синусу.

Коэффициенты ряда Фурье определяются по следующей формуле:

$$a_{n} = \frac{2}{T} \int_{t_{1}}^{t_{1}+T} f(t) \cos(n\Omega_{1}t) dt,$$

$$b_{n} = \frac{2}{T} \int_{t_{1}}^{t_{1}+T} f(t) \sin(n\Omega_{1}t) dt.$$
(3)

где t_1 - время начала отсчета.

Сравнивая формулы (1) и (2) находится выражение для A_n и ψ_n :

$$A_n = \sqrt{a_n^2 + b_n^2},$$

$$\psi_n = \arctan \frac{b_n}{a_n}.$$
(4)

3.2 Периодическая последовательность прямоугольных импульсов

Введем величину: $\Omega_1 = \frac{2\pi}{T}$, где T - период повторения импульсов. Тогда коэффициенты при составляющих, соответсвующих косинусам, будут равны:

$$a_n = \frac{2}{T} \int_{-\tau/2}^{\tau/2} V_0 \cos(n\Omega_1 t) \, dt = 2V_0 \frac{\tau}{T} \frac{\sin(n\Omega_1 \tau/2)}{n\Omega_1 \tau/2} \sim \frac{\sin x}{x},\tag{5}$$

где V_0 - амплитуда сигнала.

Так как взятая нами функция четна, следовательно $b_n = 0$.

Предположим, что *T* кратно τ . Введем ширину спектра, равную $\Delta \omega$, т.е. расстояние от главного максимума до первого нуля огибающей, возникающего при $n = \frac{2\pi}{\tau \Omega_1}$.

Заметим, что при этом выполняется следующее равество:

$$\Delta \omega \tau \simeq 2\pi \Rightarrow \Delta \nu \Delta t \simeq 1, \tag{6}$$

проверяемое в процессе исследования.

3.3 Периодическая последовательность цугов

Рассмотрим цуги колебания $V_0 \cos(\omega_0 t)$ с длительностью цуга τ и периодом повторений T. Функция f(t) является четной относительно t = 0, а коэффициент при *n*-ой гармонике со-

Функция f(t) является четной относительно t = 0, а коэффициент при *n*-ой гармонике согласно формуле (3) равен

$$a_{n} = \frac{2}{T} \int_{-\tau/2}^{\tau/2} V_{0} \cos(\omega_{0}t) \cdot \cos(n\Omega_{1}t) dt = V_{0} \frac{\tau}{T} \left(\frac{\sin\left[(\omega_{0} - n\Omega_{1})\frac{\tau}{2}\right]}{(\omega_{0} - n\Omega_{1})\frac{\tau}{2}} + \frac{\sin\left[(\omega_{0} + n\Omega_{1})\frac{\tau}{2}\right]}{(\omega_{0} + n\Omega_{1})\frac{\tau}{2}} \right), \quad (7)$$

Предположим, что Tкратн
о $\tau.$ Тогда спектры последовательности прямоугильных сигналов и цугов аналогичны с
 точностью до сдвина максимума на ω_0

3.4 Амплитудно-модулированные колебания

Рассмотрим гармонические колебания высокой частоты ω_0 , амплитуда которых медленно меняется по гармоническому закону с частотой $\Omega \ll \omega_0$:

$$f(t) = A_0 \left[1 + m \cos \Omega t \right] \cos \omega_0 t, \tag{8}$$

где коэффициент m - глубина модуляции. При m < 1 амплитуда меняется в диапазоне от $A_{min} = A_0(1-m)$ до $A_{max} = A_0(1+m)$.

Параметр глубина модуляции может быть представлена в виде:

$$m = \frac{A_{max} - A_{min}}{A_{max} + A_{min}},\tag{9}$$

откуда тригонометрическим преобразованием находится спектр сигнала:

$$f(t) = A_0 \cos \omega_0 t + \frac{A_0 m}{2} \cos (\omega_0 + \Omega) t + \frac{A_0 m}{2} \cos (\omega_0 - \Omega) t.$$
(10)

4 Ход работы

4.1 Исследование спектра периодической последовательности Прямоугольных импульсов.

В данном разделе работы исследовалась зависимость ширины спектра $\Delta \nu$ периодической последовательности прямоугольных импульсов от длительности отдельного импульса τ .

Полученные спектры для различных значений ν и τ представлены на фотографиях ниже:

 $\nu_{noem} = 1.5 \ \kappa \Gamma$ ц, $\tau = 50 \ мкс.$

 $u_{nogm} = 1.5 \ \kappa \Gamma$ ц, $\tau = 50 \ мкс.$

 $\nu_{noom}=2$ кГц, $\tau=50$ мкс.

 $u_{noom} = 2.5 \ \kappa \Gamma$ ц, $\tau = 50 \ мкс.$

 $\nu_{noem} = 1 \ \kappa \Gamma u, \ \tau = 60 \ \text{MKC}.$

Для полученных спектров были получены значения ширины спектра $\Delta \nu$ и τ , значения которых представлены в таблице 1:

$\Delta \nu, \Gamma$ ц	au, MKC
50200	20
25200	40
17200	60
13000	80
10200	100
8600	120
7400	140
6600	160
5800	180
5000	200

На основе полученных данных было экспериментально проверено равенство (6), которое оказалось верно с достаточно высокой точностью:

$$\Delta\nu\tau\approx 1,00\pm 0,02$$

4.2 Исследование спектра периодической последовательности цугов

В данной части работы исследовалась зависимость расстояния между ближайшими спектральными компонентами от частоты синусоидального цуга.

Пример спектра синусоидального цуга представлен на фотографии ниже:

Спектр синусоидального цуга

Для этого при различных параметрах синусоидального цуга были получены усточивые картины сигналов на экране осциллографа. Полученные значения $\Delta \nu$, T и N были занесены в таблицу 2:

$\Delta \nu$	T	N
50000	0,001	5
50000	0,001	3
50000	0,003	5
30000	0,001	5
70000	0,001	5

На основе полуечных данных было найдено отношение: $\frac{\Delta \nu}{\nu} \approx 1, 5.$

4.3 Исследование спектра амплитудно - модулируемого сигнала

В данной части работы исследовалась зависимость отношения амплитуд спектральных линий синусоидального сигнала, модулируемого низкочастотными гармоническими колебаниями, от коэффициента модуляции, измеряемого с помощью осциллографа.

Для этого изменяя глубину модуляции при постоянных параметрах $\nu = 50 \kappa \Gamma$ ц и $\nu_{mod} = 2 \kappa \Gamma$ ц измерось отношение $a_{60\kappa}/a_{och}$ амплитуд боковой и основной линий спектра в зависимоти от *m*. Полученные результаты представлены в таблице 3:

			-
m,%	$a_{\text{бок}}$	$a_{\rm och}$	$a_{\mathrm{бок}}/a_{\mathrm{осн}}$
50	186	738	0, 25
10	38	738	0,05
20	74	738	0, 10
30	110	738	0, 15
40	150	738	0, 20
60	222	738	0, 30
70	258	738	0,35
80	298	738	0, 40
90	334	738	0, 45
100	370	738	0, 50

<u>Из</u> полученных отношений с достаточной точностью видно, что $a_{\text{бок}}/a_{\text{осн}} \cdot 2 \approx m$, что соответвуюет теоретических выводам, представненным выше.

5 Вывод

В данной работе исследовались различные спектры электрических сигналов. Изменяя параметры частоты, периода и вида сигналов были подтверждены теоретические выводы, следующие из формулы разложения сигнала в ряд Фурье. Таким образом, была экспериментало подтверждена проавильность разложения в ряд Фурье в рамках точности данной модели.